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ABSTRACT 

This work is aimed to give some basic definitions of multiplicative Sumudu transform and its properties. 

The multiplicative Sumudu transform is obtained by using Sumudu transform and its properties in a 

classical analysis as basis. Solving some multiplicative differential equations by this transform is used as an 

application.  
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1. Introduction 

The key to understand multiplicative calculus is a formal substitution, whereby one replaces addition and 

subtraction by multiplication and division, respectively. Michael Grossman and Robert Katz began their 

development of Non- Newtonian calculus on 14 july 1967.There are infinitely many multiplicative non- 

newtonian calculi, including the geometric and bio-geometric calculus. It has been applied in a variety of 

scientific, engineering and mathematical fields [1]. However D.Stanley called the geometric analysis as 

multiplicative calculus [2].Further study to multiplicative calculus was given by D.Campell [3], then 

Bashirov et al. [4] has given concepts of non-Newtonian calculus and its applications including properties 

of derivative and integral operators of non-Newtonian calculus. With the passage of time some researchers 

[5-12] have proved that multiplicative calculus is very helpful in solving problems related to science and 

engineering fields.  

          In the present paper, we will study multiplicative Samudu transform and its applications. In order to 

study this we give definition of multiplicative Samudu transform, Secondly we will give some basic 

properties of multiplicative samudu transform as corresponding to classical samudu. In the end we find 

solution of some multiplicative differential equations by applying multiplicative samudu transform.   

2 .Multiplicative Derivative.  

In this section we will present some basic definition and properties of multiplicative derivative which can be 

seen in [2-5] 

  

Definition2.1: Let 𝑔 ∶ 𝑅 → 𝑅+ be a positive function. The Multiplicative derivative of the function 𝑔 

is given by 

                                      
𝑑∗𝑔

𝑑𝑡
(𝑡) = 𝑔∗(𝑡) = lim

ℎ→0
(

𝑔(𝑡+ℎ)

𝑔(𝑡)
)

1
ℎ
                                          (2.1) 

Let us assume that the function 𝑔 is a positive then using properties of the classical derivative we can write 

multiplicative derivative as 

                                                                              𝑑
∗𝑔

𝑑𝑡
(𝑡) = 𝑔∗(𝑡) = 𝑒

𝑔′(𝑡)

𝑔(𝑡) = 𝑒(ln 𝑜𝑔)′(𝑡)                                                                                (2.2)                                                             

 for (ln 𝑜𝑔)(t)  = ln(𝑔(𝑡)). 
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Definition 2.2: If  𝑔 is a positive function and if  𝑔∗ is a multiplicative derivative of 𝑔, now if  the function 

𝑔∗ has also multiplicative derivative which is given by 𝑔∗∗ and it is called second order multiplicative 

derivative of 𝑔. Similarly we can define 𝑔∗(𝑛). which is called nth order multiplicative derivative of 𝑔. By 

repeating multiplicative differentiation operation n-times, we will find nth order multiplicative derivative of 

the positive function 𝑔 at the point t which defined as  

                                                                 𝑔∗(𝑛) = 𝑒(ln 𝑜𝑔)𝑛(𝑡)                                                                                 (2.3) 

Theorem 2.1: Let 𝑔 and ℎ be differentiable with the multiplicative derivative .If c be arbitrary constant, 

then 𝑐. 𝑔, 𝑔ℎ, 𝑔 + ℎ,
𝑔

ℎ⁄ ,𝑔ℎ functions are differentiable with the multiplicative derivative and their 

multiplicative derivatives can be shown as 

1.(𝑐. 𝑔)∗(𝑡) = 𝑔∗(𝑡), 

2.(𝑔. ℎ)∗(𝑡) = 𝑔∗(𝑡). ℎ∗(𝑡), 

3.(𝑔 + ℎ)∗(𝑡) = 𝑔∗(𝑡)
𝑔(𝑡)

𝑔(𝑡)+ℎ(𝑡) ℎ∗(𝑡)
ℎ(𝑡)

𝑔(𝑡)+ℎ(𝑡) , 

4.(
𝑔

ℎ⁄ )
∗

= 𝑔∗(𝑡)/ℎ∗(𝑡), 

5.(𝑔ℎ)∗(𝑡) =  𝑔∗(𝑡)ℎ(𝑡)𝑔(𝑡)ℎ′(𝑡) 

Theorem 2.2: If a positive function 𝑔 is differentiable with the multiplicative derivative at the point 𝑡, then 

it is differentiable in the classical sense and the relation between these  two  derivatives can be shown as  

                                                             𝑔′(𝑡) = 𝑔(𝑡) ln 𝑔∗ (𝑡)                                                                           (2.4) 

Theorem 2.3: 𝑔∗(𝑡) = 1 for ∀  𝑡 ∈ (𝑎, 𝑏) ⟺ 𝑔(𝑡) = 𝑐 > 0 is fixed function in open interval (a,b) 

Theorem 2.4: Let ℎ be differentiable in meaning of the multiplicative derivative, 𝑔 be differentiable in the 

classical sense. If 

                                                          𝑔(𝑡) = (ℎ𝑜𝑘)(𝑡),  

Then, it can be written by  

                                                         𝑔∗(𝑡) = [ℎ∗(𝑘(𝑡))]𝑘′(𝑡)                                                                            (2.5) 

Theorem 2.5: Let 𝑔 be a positive function then, 𝑔∗(𝑡) = 1 ⇔  𝑔′(𝑡) = 0 

Multiplicative integrals 

Definition2.3: A multiplicative integral is also defined in [4] for positive bounded functions and if 𝑔 is 

Riemann integrable on [a,b], then                                                                                                                          

                                                   ∫ 𝑔(𝑡)𝑑𝑡 =

𝑏

𝑎

𝑒𝑥𝑝 (∫ ln 𝑔(𝑡) 𝑑𝑡

𝑏

𝑎

) =  𝑒∫ (ln 𝑔(𝑡))𝑑𝑡
𝑏

𝑎                                                (2.6) 

This multiplicative integral has the following properties 

(𝑎)  ∫  (

𝑏

𝑎

(𝑔(𝑡)𝑘)𝑑𝑡 = (∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎

)

𝑘

,             Where 𝑘 ∈ 𝑅            
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(𝑏) ∫(𝑔(𝑡)ℎ(𝑡))𝑑𝑡 = ∫ 𝑔(𝑡)𝑑𝑡 ∫ ℎ(𝑡)𝑑𝑡

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

                                                                      

(𝑐)    ∫ (
𝑔(𝑡)

ℎ(𝑡)
)

𝑑𝑡
𝑏

𝑎

=
∫ (𝑔(𝑡))𝑑𝑡𝑏

𝑎

∫ (ℎ(𝑡))𝑑𝑡𝑏

𝑎

 

 

(𝑑) ∫ 𝑔(𝑡)𝑑𝑡 = ∫ 𝑔(𝑡)𝑑𝑡 ∫ 𝑔(𝑡)𝑑𝑡                  a ≤ 𝑐 ≤ 𝑏

𝑏

𝑐

𝑐

𝑎

𝑏

𝑎

 

 

Where 𝑔 𝑎𝑛𝑑 ℎ  are multiplicative integrable [a, b]. 

3. The Multiplicative Sumudu Transform 

In this section we will give the features of this new transform by defining multiplicative Sumudu transform 

with the help of Sumudu transform of classical analysis.  

Definition 3.1 Let 𝑓(𝑡) be a positive definite function given on the closed interval [0,∞). Then 

multiplicative samudu transform of 𝑓(𝑡) is defined as  

               𝒮𝑚{𝑓(𝑡)} =  𝐹𝑚(𝑢)    =
1

𝑢
∫ 𝑓(𝑡)𝑒

(
−𝑡
𝑢

)
𝑑𝑡

∞

0
 =    𝑒

1

𝑢
∫ 𝑒

−𝑡
𝑢 ln 𝑓(𝑡)𝑑𝑡          

∞
0 = 𝑒𝑆{ln 𝑓(𝑡)}                         (3.1) 

Here, multiplicative integral, which is defined as 

      

                                                                   ∫ 𝑓(𝑡)𝑑𝑡

∞

0

= 𝑒∫ ln 𝑓(𝑡)𝑑𝑡
∞

0                                                                               (3.2)   

has been used. 

According to definition of multiplicative sumudu transform, multiplicative samudu transform of some basic 

functions can be given as the following expression. 

 𝒮𝑚{1} = 𝐹𝑚(𝑢) = 𝑒
1

𝑢
∫ ln(1)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0 = 1                                                                                                       (3.3) 

 𝒮𝑚{𝑒𝑡} = 𝑒𝑆{ln 𝑒𝑡} = 𝑒𝑆{𝑡} = 𝑒𝑢                                          (3.4) 

𝒮𝑚{𝑒𝑎𝑡} = 𝑒𝑆{ln 𝑒𝑎𝑡} = 𝑒
1

1−𝑎𝑢                                          (3.5) 

𝒮𝑚{𝑒𝑐𝑜𝑠𝑎𝑡} = 𝑒𝑆{ln 𝑒𝑐𝑜𝑠𝑎𝑡} = 𝑒
1

1+𝑎2𝑢2                                           (3.6) 

𝒮𝑚 {𝑒
1

𝑎
𝑠𝑖𝑛𝑎𝑡} = 𝑒𝑆{ln 𝑒

1
𝑎

𝑠𝑖𝑛𝑎𝑡
} = 𝑒

𝑢

1+𝑎2𝑢2                                          (3.7) 

𝒮𝑚{𝑒𝑐𝑜𝑠ℎ𝑎𝑡} = 𝑒𝑆{ln 𝑒𝑐𝑜𝑠ℎ𝑎𝑡} = 𝑒
1

1−𝑎2𝑢2                                          (3.8) 

𝒮𝑚 {𝑒
1

𝑎
𝑠𝑖𝑛ℎ𝑎𝑡} = 𝑒𝑆{ln 𝑒

1
𝑎

𝑠𝑖𝑛ℎ𝑎𝑡
} = 𝑒

𝑢

1−𝑎2𝑢2                                         (3.9) 

Theorem 3.1 (Multiplicative Linearity Property) 
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Multiplicative Sumudu transform is multiplicatively linear, in other words, if 𝑐1 ,𝑐2 are arbitrary exponents  

and 𝑓1  ,𝑓2 are two given functions , which have multiplicative sumudu transform then 

                                              𝒮𝑚{𝑓1
𝑐1𝑓2

𝑐2} =  𝒮𝑚{𝑓1}𝑐1 𝒮𝑚{𝑓2}𝑐2                                                             (3.10) 

Theorem 3.2 (Multiplicative first shifting property) 

Let multiplicative Sumudu transform of function 𝑓(𝑡) be  𝒮𝑚{𝑓(𝑡)} =  𝐹𝑚(𝑢) , then 

                                        𝒮𝑚{𝑓(𝑡)𝑒𝑎𝑡
}  = 𝑒

1

1−𝑢𝑎𝐹𝑚 {
𝑢

(1−𝑢𝑎)
}                                                                                 (3.11) 

Proof:  𝒮𝑚{𝑓(𝑡)𝑒𝑎𝑡
} = 𝑒

1

𝑢
∫ {ln 𝑓(𝑡)}𝑒𝑎𝑡

𝑒
−𝑡
𝑢 𝑑𝑡

∞
0  

                                 = 𝑒
1

𝑢
∫ ln 𝑓(𝑡)𝑒

−𝑡(
1
𝑢

−𝑎)
𝑑𝑡

∞
0  

         Now making substitution −𝑡 (
1

𝑢
− 𝑎) = 𝑥 

            𝒮𝑚{𝑓(𝑡)𝑒𝑎𝑡
} =  𝑒

1

1−𝑢𝑎
∫ ln 𝑓(

𝑥𝑢

1−𝑢𝑎
)𝑒−𝑥𝑑𝑥

∞
0  

            𝒮𝑚{𝑓(𝑡)𝑒𝑎𝑡
} =  𝑒

1

1−𝑢𝑎𝐹𝑚 {
𝑢

(1−𝑢𝑎)
} 

 

Theorem 3.3 (Multiplicative second first shifting property) 

Let 𝒮𝑚{𝐺(𝑡)} = 𝐹𝑚(𝑢)   and    𝐺(𝑡) = {
1,                  0 < 𝑡 < 𝑎

𝑓(𝑡 − 𝑎),          𝑡 > 𝑎       
                                                            (3.12) 

                             then      𝒮𝑚{𝐺(𝑡)} = 𝐹𝑚(𝑢)𝑒
−𝑎
𝑢                                                                                       (3.13) 

Proof:               𝒮𝑚{𝐺(𝑡)} = 𝑒
1

𝑢
∫ ln 𝐺(𝑡)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0  

                                          = 𝑒
1

𝑢
∫ ln(1)𝑒

−𝑡
𝑢 𝑑𝑡+

1

𝑢
∫ ln 𝑓(𝑡−𝑎)𝑒

−𝑡
𝑢 𝑑𝑡

∞
𝑎

𝑎
0    

Here first integral is zero use substitution for 2nd integral we get  

                                               𝒮𝑚{𝐺(𝑡)} = 𝑒
1

𝑢
∫ ln 𝑓(𝑥)𝑒

−(𝑎+𝑥)
𝑢 𝑑𝑥

∞
0  

                                               𝒮𝑚{𝐺(𝑡)} = 𝑒𝑒
(

−𝑎
𝑢

)
 
1
𝑢 ∫ ln 𝑓(𝑥)𝑒

−𝑥
𝑢 𝑑𝑥

∞
0

 

                                               𝒮𝑚{𝐺(𝑡)} = 𝑒
{ 

1
𝑢 ∫ ln 𝑓(𝑥)𝑒

−𝑥
𝑢 𝑑𝑥

∞
0 }

𝑒
(

−𝑎
𝑢

)

 

                                               𝒮𝑚{𝐺(𝑡)} =  𝐹𝑚(𝑢)𝑒
−𝑎
𝑢   

Theorem 3.4: (Multiplicative change of scale property) 

                                      Let 𝒮𝑚{𝑓(𝑡)} = 𝐹𝑚(𝑢) then we have  

                                          𝒮𝑚{𝑓(𝑎𝑡)} = 𝐹𝑚(𝑢𝑎)                                                                                       (3.14) 
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Proof: we know by definition        

                                          𝒮𝑚{𝑓(𝑎𝑡)} = 𝑒
1

𝑢
∫ ln 𝑓(𝑎𝑡)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0  

 Now by making substitution  𝑎𝑡 = 𝑥  

                                        𝒮𝑚{𝑓(𝑎𝑡)} = 𝑒
1

𝑢𝑎
∫ ln 𝑓(𝑥)𝑒

(
−𝑥
𝑢𝑎

)
𝑑𝑥

∞
0     

                                        𝒮𝑚{𝑓(𝑎𝑡)} = 𝐹𝑚(𝑢𝑎)  

Theorem 3.5:   Let 𝒮𝑚{𝑓(𝑡)} = 𝐹𝑚(𝑢)  then 

                              𝒮𝑚 {𝑓(𝑡)
(

𝑡−𝑢

𝑢2 )
𝑛

} = 𝐹𝑚
∗𝑛(𝑢)                                                                                          (3.15) 

Proof: we will prove this theorem by induction  

                                                𝒮𝑚{𝑓(𝑡)} = 𝐹𝑚(𝑢) =
1

𝑢
∫ 𝑓(𝑡)𝑒

(
−𝑡
𝑢

)
𝑑𝑡

∞

0
  

                                                𝒮𝑚{𝑓(𝑡)} = 𝐹𝑚(𝑢)  = 𝑒
1

𝑢
∫ ln 𝑓(𝑡)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0  

Consequently taking multiplicative derivative of this expression we have   

    

𝐹𝑚
∗(𝑢) =  

𝑑∗

𝑑𝑢∗
{𝑒

1
𝑢 ∫ ln 𝑓(𝑡)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0 } = 𝑒

𝑑
𝑑𝑢

{𝑒
1
𝑢 ∫ ln 𝑓(𝑡)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0 }

                      

              =  𝑒
(

𝑡−𝑢
𝑢2 )

1
𝑢 ∫ ln 𝑓(𝑡)𝑒

−𝑡
𝑢 𝑑𝑡

∞
0      =  𝑒

1
𝑢 ∫ {ln 𝑓(𝑡)}

(
𝑡−𝑢

𝑢2 )
𝑒

−𝑡
𝑢 𝑑𝑡

∞
0  

                                𝐹𝑚
∗(𝑢) =       𝒮𝑚 {[𝑓(𝑡)]

(
𝑡−𝑢

𝑢2 )
}        =     𝒮𝑚 {[𝑓(𝑡)]

(
𝑡−𝑢

𝑢2 )
1

}  

and we get the following equality  

𝒮𝑚 {[𝑓(𝑡)]
(

𝑡−𝑢
𝑢2 )

1

} = 𝐹𝑚
∗1(𝑢)             

Let us assume the hypothesis holds for the case 𝑛 = 𝑘. then we have 

                 𝐹𝑚
∗𝑘(𝑢) = 𝑒

1

𝑢
∫ (

𝑡−𝑢

𝑢2 )
𝑘

ln 𝑓(𝑡) 𝑒
−𝑡
𝑢 𝑑𝑡

∞
0        = 𝒮𝑚 {[𝑓(𝑡)]

(
𝑡−𝑢

𝑢2 )
𝑘

} 

Now if the multiplicative derivative is taken again for the last equation, we have 

                                                  𝐹𝑚
∗𝑘+1(𝑢) = 𝒮𝑚 {𝑓(𝑡)

(
𝑡−𝑢

𝑢2 )
𝑘+1

} = 𝑒
1

𝑢
∫ (

𝑡−𝑢

𝑢2 )
𝑘+1

ln 𝑓(𝑡) 𝑒
−𝑡
𝑢 𝑑𝑡

∞
0  

Similarly if we repeat multiplicative derivative n- times we will get    

                                                     𝐹𝑚
∗𝑛(𝑢) =    𝒮𝑚 {[𝑓(𝑡)]

(
𝑡−𝑢

𝑢2 )
𝑛

}        

This proves the theorem. 
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Theorem 3.6 (Multiplicative convolution theorem). 

                             If  𝒮𝑚
−1{𝐹(𝑢)} = 𝑓(𝑡)   and   𝒮𝑚

−1{𝐺(𝑢)} = 𝑔(𝑡)  , then   

                                         𝒮𝑚
−1{𝐹𝑚(𝑢)𝐺(𝑢)} =  

1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥𝑡

0
                                                             (3.16) 

Proof: Applying multiplicative sumudu transform to integral   
1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥𝑡

0
 we get, 

𝒮𝑚 {
1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥

𝑡

0

 } =  𝒮𝑚 {𝑒
1
𝑢 ∫ 𝑔(𝑡−𝑥) ln 𝑓(𝑥)𝑑𝑥  𝑡

0 } 

                                             = 𝑒
𝑆{ln{𝑒

1
𝑢 ∫ 𝑔(𝑡−𝑥) ln 𝑓(𝑥)𝑑𝑥  𝑡

0 }}
= 𝑒𝑆{

1

𝑢
∫ 𝑔(𝑡−𝑥) ln 𝑓(𝑥)𝑑𝑥 𝑡

0
}
  

From the convolution property of classical analysis, we have 

                                             𝒮𝑚 {
1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥𝑡

0
 } = 𝑒𝑆{ln 𝑓(𝑥)} 𝑆{𝑔(𝑥)}  

                                             𝒮𝑚 {
1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥𝑡

0
 } = 𝑒𝑆{ln 𝑓(𝑥)} 𝑆{𝑔(𝑥)}

 

                                            𝒮𝑚 {
1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥𝑡

0
 }  = 𝐹𝑚(𝑢)𝐺(𝑢)              

                                                      
1

𝑢
∫ 𝑓(𝑥)𝑔(𝑡−𝑥)𝑑𝑥𝑡

0
 = 𝒮𝑚

−1  {𝐹𝑚(𝑢)𝐺(𝑢)}
 

 
                

Definition 3.2 Let 𝑓(𝑡) be a positive definite function given on the closed interval [0,∞) and ln 𝑓(𝑡) be a 

function given on the interval [0,∞) if their exist positive constant 𝑡0,𝑘 and 𝛼 such that  

                                                                     |𝑓(𝑡)| ≤ 𝑘𝑒𝑒𝛼t
                                                                                        (3.17) 

For 𝑡 > 𝑡0 then f is said to be of 𝛼-double exponential order. 

Theorem 3.7(Existence of multiplicative sumudu transform) 

Let 𝑓(𝑡) be a positive definite function which is of 𝛼-double exponential order for 𝑡 > 𝑡0  given on the 

closed interval [0, ∞) then for s > 𝛼, 𝒮𝑚{𝑓(𝑡)} exists. 

Proof: we will show that for s > 𝛼, integral 
1

𝑢
∫ ln 𝑓(𝑡)𝑒

−𝑡

𝑢 𝑑𝑡
∞

0
 is convergent, to do this we will divide 

integral into two integrals as below 

                              
1

𝑢
∫ ln 𝑓𝑑𝑡

∞

0
=

1

𝑢
∫ ln 𝑓(𝑡)𝑒

−𝑡

𝑢 𝑑𝑡
𝑡0  

0
+

1

𝑢
∫ ln 𝑓(𝑡)𝑒

−𝑡

𝑢 𝑑𝑡
∞

𝑡0  
                                                  (3.18) 

The first integral in above equation is convergent because of ln 𝑓(𝑡) and thus ln 𝑓(𝑡)𝑒
−𝑡

𝑢  is piece-wise 

continuous in the interval [0, 𝑡0] .On the other hand, as 𝑓(𝑡) is of 𝛼-double exponential order  

                                                                |𝑓(𝑡)| ≤ 𝑘𝑒𝑒𝛼t
 

For 𝑡 > 𝑡0, hence for all 𝑡 > 𝑡0 

                                                |
1

𝑢
ln 𝑓 (𝑡)𝑒

−𝑡

𝑢 | = 
1

𝑢
𝑒

−𝑡

𝑢 |ln 𝑓(𝑡)| ≤
1

𝑢
𝑒

−𝑡

𝑢 (ln 𝑘 + 𝑒𝛼𝑡) 
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1

𝑢
∫  

∞

0
ln 𝑓 (𝑡)𝑒

−𝑡

𝑢 𝑑𝑡 ≤
1

𝑢
∫ 𝑒

−𝑡

𝑢
∞

𝑡0
|ln( 𝑘)|𝑑𝑡 +

1

𝑢
∫ 𝑒

−𝑡

𝑢
+𝛼𝑡𝑑𝑡

∞

𝑡0
    

                                                                        = ln 𝑘𝑒
𝑡0
𝑢 +

𝑒
−𝑡0(

1−𝑢𝛼
𝑢

)

(1−𝑢𝛼)
< ∞, for 𝑠 > 𝛼 

So the second integral of (3.18) is convergent we see that both the integrals on the RHS of exits. Thus for 

s > 𝛼 𝒮𝑚{𝑓(𝑡)} exists. 

Theorem 3.8 Let 𝑓(𝑡) be a positive definite function which is of 𝛼-double exponential order for 𝑡 > 𝑡0, 

given  the closed interval [0,∞) and ln 𝑓(𝑡) be a piecewise continuous function defined on the interval [0,∞) 

then the following holds 

                                                          lim
𝑢→∞

{ 𝑓(𝑡)} = 𝑒𝑘                                                                         (3.19) 

Proof: from the proof of theorem (3.7) we can write  

                                                𝒮𝑚{𝑓(𝑡)} ≤ 𝑒
1

𝑢
∫ ln 𝑘𝑒𝑒𝛼𝑡𝑒

−𝑡
𝑢 𝑑𝑡

∞
0  

                                                                ≤ 𝑒
1

𝑢
∫ ln 𝑘𝑒

−𝑡
𝑢

  
𝑑𝑡+

1

𝑢
∫ 𝑒

(
−𝑡
𝑢

+𝛼𝑡)
𝑑𝑡

∞
0

∞
0  

                                               𝒮𝑚{𝑓(𝑡)}  ≤  𝑒
ln 𝑘(𝑒

−𝑡0
𝑢 )

 

For all s> 𝛼, then taking limit from both sides as 𝑢 → ∞ we get  

lim
𝑢→∞

{𝑓(𝑡)} ≤ 𝑒
lim

𝑢→∞
𝑘(𝑒

−𝑡0
𝑢 )

= 𝑒𝑘                                            

Theorem 3.9 Let 𝑓 be a function of 𝛼-double exponential order defined on the interval [0,A] and let 𝑓∗ be a 

piece-wise continuous function defined on the interval [0,A], then samudu transform of multiplicative 

derivative is 

                                                            𝒮𝑚{𝑓∗(𝑡)} =  
1

𝑓(0)
𝐹(𝑢)

1

𝑢                                                                (3.20) 

For s > 𝛼 

Proof: 𝒮𝑚{𝑓∗(𝑡)} = 𝒮𝑚 {𝑒
𝑓′(𝑡)

𝑓(𝑡) } = 𝑒
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡

∞
0  

                                                     = 𝑒
lim

𝐴→∞

1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡

𝐴
0  

In the interval [0,A] denote the points of dis-continuities of function 𝑓∗ by 𝑡0, 𝑡1, 𝑡2………𝑡𝑛  using the 

points as end-points of domain of integration ,we write the integral as  

1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡 =

1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡

𝑡1

0

𝐴

0

+
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡

𝑡2

𝑡1

+ ⋯ +
1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡

𝐴

𝑡𝑛

  

Using integration by parts method separately to each term on the right hand side of this expression, we get  
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1

𝑢
∫

𝑓′(𝑡)

𝑓(𝑡)
𝑒

−𝑡
𝑢 𝑑𝑡 =

𝐴

0

1

𝑢
{|𝑒

−𝑡
𝑢 ln 𝑓(𝑡)|

0

𝑡1

+ |𝑒
−𝑡
𝑢 ln 𝑓(𝑡)|

𝑡1

𝑡2

+ ⋯ + |𝑒
−𝑡
𝑢 ln 𝑓(𝑡)|

𝑡𝑛

𝐴

}

+
1

𝑢2
{∫ 𝑒

−𝑡
𝑢 ln 𝑓(𝑡)𝑑𝑡 + ∫ 𝑒

−𝑡
𝑢 ln 𝑓(𝑡)𝑑𝑡 + ⋯ + ∫ 𝑒

−𝑡
𝑢 ln 𝑓(𝑡)𝑑𝑡

𝐴

𝑡𝑛

𝑡2

𝑡1

𝑡1

0

} 

As 𝑓(𝑡) is continuous, domains of integration of the above expression can be combined in one domain 

.Thus we write  

𝑒
1
𝑢 ∫

𝑓′(𝑡)
𝑓(𝑡)

𝑒
−𝑡
𝑢 𝑑𝑡

𝐴
0 = 𝑒

1
𝑢

{𝑒
−𝑡
𝑢 ln 𝑓(𝑡)|

0

𝐴

} +
1

𝑢2{∫ 𝑒
−𝑡
𝑢 ln 𝑓(𝑡)𝑑𝑡

𝐴
0

}

 

                                                           

                                      = 𝑒
1
𝑢

{𝑒
−𝐴
𝑢 ln 𝑓(𝐴)−ln 𝑓(0)}+

1
𝑢2{∫ 𝑒

−𝑡
𝑢 ln 𝑓(𝑡)𝑑𝑡

𝐴
0

}
 

           as 𝐴 → ∞, 𝑒
−𝐴

𝑢 ln 𝑓(𝐴) → 0  and 𝑒
1

𝑢
𝑒

−𝐴
𝑢

→ 1  

For > 𝛼 , then for 𝑢 > 𝛼,  

we obtain    𝒮𝑚{𝑓∗(𝑡)} = 𝑒− ln 𝑓(0)𝑒
{

1

𝑢
∫ 𝑓(𝑡)𝑒

−𝑡
𝑢

𝐴
0

}

1
𝑢

 

                   𝒮𝑚{𝑓∗(𝑡)} =   
1

𝑓(0)
𝐹𝑚(𝑢)

1

𝑢 

This proves the theorem, if we replace 𝑓  by 𝑓∗   in above theorem then multiplicative samudu transform of  

𝑓∗∗  is equal to  

                                                          𝒮𝑚{𝑓∗∗(𝑡)} =
𝐹(𝑢)(

1
𝑢

)
2

𝑓(0)
1
𝑢𝑓(0)

                                                                             (3.21) 

Using induction we can obtain multiplicative sumudu transform of 𝑓∗(𝑛) as in the following result. 

Result: Let 𝑓, 𝑓∗ … 𝑓∗(𝑛−1) be continuous function, 𝑓∗𝑛 be a piece-wise continuous function on the interval 

0≤ 𝑡 ≤ 𝐴 also suppose that there exist positive real numbers 𝑘, 𝛼 such that 

|𝑓(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡
, |𝑓∗(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡

… |𝑓∗(𝑛−1)(𝑡)| ≤ 𝑘𝑒𝑒𝛼𝑡
 

For 𝑡 > 𝑡0 then for s> 𝛼  multiplicative samudu transform of 𝑓∗𝑛(𝑡) exists and can be calculated by the 

formula  

                                       𝒮𝑚{𝑓∗𝑛(𝑡)} =
𝐹(𝑢)

(
1
𝑢

)
𝑛

𝑓(0)(
1
𝑢

)
𝑛−1

𝑓∗(0)(
1
𝑢

)
𝑛−2

…………𝑓∗𝑛−1(0)

                                                            (3.22) 

Theorem 3.10 Let 𝑓1 and 𝑓2 be positive definite continuous functions, 

                                          𝑓1 =  𝑓2 if and only if 𝒮𝑚{𝑓1} = 𝒮𝑚{𝑓2}. 

Proof:  𝑓1 = 𝑓2 ⟺ ln 𝑓1 = ln 𝑓2 from the sumudu transform of classical analysis we get  

                               𝒮{ln 𝑓1} = 𝒮{ln 𝑓2}   ⟺ 𝑒𝒮{ln 𝑓1} = 𝑒𝒮{ln 𝑓2} , so  𝒮𝑚{𝑓1} = 𝒮𝑚{𝑓2}. 
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Definition 3.3.if 𝐹𝑚(𝑢) is the multiplicative samudu transform of a continuous 𝑓, i.e, 

                                                               𝒮𝑚{𝑓} = 𝐹                                                                                   (3.23) 

𝒮𝑚
−1{𝐹} is called as the inverse multiplicative samudu transform of F. 

Theorem 3.11 Inverse multiplicative samudu transform is multiplicatively linear. In other words, if 𝑐1, 𝑐2 

are arbitrary exponents and  𝑓1 , 𝑓2 are two given continuous functions which have multiplicative samudu 

transform  𝐹1, 𝐹2  respectively, then 

                                      𝒮𝑚
−1{𝐹1

𝑐1𝐹2
𝑐2} =  𝒮𝑚

−1{𝐹1}𝑐1  𝒮𝑚
−1{𝐹2}𝑐2                                                       (3.24) 

Proof: Suppose   𝑓1  and   𝑓2  are continous functions such that  

                                        𝐹1 =  𝒮𝑚{𝑓1}     and     𝐹2 =  𝒮𝑚{𝑓2}     

From the definition, we know that  

                                   𝒮𝑚
−1{𝐹1} = 𝑓1       and     𝒮𝑚

−1{𝐹2} = 𝑓2 

Using the multiplicative linearity property of multiplicative samudu transform we have  

                                            𝒮𝑚{𝑓1
𝑐1  𝑓2

𝑐2} =   𝒮𝑚
 {𝑓1}𝑐1𝒮𝑚{𝑓2}𝑐2 = 𝐹1

𝑐1𝐹2
𝑐2 

From the definition of inverse multiplicative sumudu transform we obtain  

                                    𝒮𝑚
−1{𝐹1

𝑐1𝐹2
𝑐2} = 𝑓1

𝑐1𝑓2
𝑐2 =  𝒮𝑚

−1{𝐹1}𝑐1  𝒮𝑚
−1{𝐹2}𝑐2 

4.  Applications to Multiplicative ordinary differential equation  

We have the following formula for multiplicative samudu transforms of multiplicative derivatives 

                               

                              𝒮𝑚 {𝑓∗𝑛(𝑡)} =
𝐹(𝑢)(

1
𝑢

)
𝑛

𝑓(0)(
1
𝑢

)
𝑛−1

𝑓∗(0)(
1
𝑢

)
𝑛−2

… … … … 𝑓∗𝑛−1(0)

                                               (3.25)   

 

This formula includes multiplicative samudu transform of 𝑓, 𝑓∗𝑓∗∗ … … … . 𝑓∗(𝑛−1)  functions, So it can be 

used to obtain solution of initial value problem, particularly of multiplicative type with constant 

exponentials .we get solution by applying multiplicative fourier transform to both sides of equations of these 

problems. 

For example, consider the second order ordinary differential equation 

                                                     (𝑦∗∗)(𝑦∗)𝑎1(𝑦)𝑎2 =  1                                                                        (3.26) 

                                                     𝑦(0) = 𝑏0, 𝑦∗(0) = 𝑏1 

Here 𝑎1 ,𝑎2  and  𝑏0 , 𝑏1 are constants .Applying multiplicative samudu transform to both sides to both sides 

and using the multiplicative linearity property of multiplicative sumudu transform, we get 

                                                     𝒮𝑚{𝑦∗∗} 𝒮𝑚{𝑦∗}𝑎1 𝒮𝑚{𝑦}𝑎2 = 𝒮𝑚 {1} 

Now using previous result we obtain  
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                                                           {
𝑦(𝑢)

(
1
𝑢

)
2

𝑦(0)
1
𝑢𝑦∗(0)

} {
𝑦(𝑢)

1
𝑢

𝑦(0)
}

𝑎1

{𝑦(𝑢)}𝑎2 = 1 

If the above equation is rearranged, we can write  

𝑦(𝑢)
1

𝑢2+
𝑎1
𝑢

+𝑎2

{𝑏0}(
1
𝑢

+𝑎1)𝑏1

= 1                                  

𝑦(𝑢)
1

𝑢2+
𝑎1
𝑢

+𝑎2 =  {𝑏1[𝑏0](
1
𝑢

+𝑎1)}
 

       

                                                                        𝑦(𝑢) = {𝑏1[𝑏0](
1

𝑢
+𝑎1)}

𝑢2

1+𝑢𝑎1+𝑢2𝑎2
   

Consequently taking inverse multiplicative samudu transform we obtain  

                                                     𝑦(𝑡) =  𝒮𝑚
−1𝑦(𝑢) 

This method can be applied to any order of linear differential equation with constant exponentials. 

Example 4.1 consider the following multiplicative differential equation  

                                                       𝑦∗∗𝑦 = 1                                                                                               (4.1) 

With initial condition  𝑦(0) = 𝑒, 𝑦 ∗ (0) = 1 

Applying multiplicative sumudu transform to both sides and using the multiplicative linearity property of 

multiplicative samudu transform, we get 

𝒮𝑚{𝑦∗∗} 𝒮𝑚{𝑦} = 𝒮𝑚{1} 

Now using previous result we obtain  

                

{
𝑦(𝑢)(

1
𝑢

)
2

𝑦(0)
1
𝑢𝑦∗(0)

} {𝑦(𝑢)} = 1         

           

  𝑦(𝑢)(
1
𝑢

)
2

𝑦(𝑢) = 𝑒
1

𝑢⁄  = 𝑒
(

𝑢
1+𝑢2)

        

                                                      

                                                                         𝑦(𝑡) = 𝒮𝑚 
−1{𝑒}(

𝑢

1+𝑢2)
= 𝑒sin(𝑡)                                         (4.2) 

5. Conclusion 

In this paper, we have defined multiplicative Samudu transform for positive definite functions. It has been 

demonstrated that this transform has basic properties such as linearity, convolution, shifting properties. The 

existence of Multiplicative Samudu transform has also been proved. Finally, it has been shown that this 

transform is an alternative method to find solutions of some multiplicative differential equations.  
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