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Abstract: In this paper, the absorption and dispersion of light have been explained using the hypothesis that the molecules of ponderable bodies 

contain small bodies that are set in vibration by the periodic forces existing in a beam of light or radiant heat. In the Quantum theory, however, the 

actual mechanism of the dynamical system does not come into the picture except its transition frequencies. Hence the theory is of quite general 

application to resonant systems. In the first part, we deal with the problem classically and make a transition to the quantum theory by replacing 

the strength of the oscillator with the quantum mechanical expression for it. In the second part, we shall deal with quantum mechanical theory and 

point out the significant differences between the two theories and also have derived an expression in another formula like Van Vleck-Weisskopf 

formulae and so on.  
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I. INTRODUCTION 

 In contradiction to Michelson’s approach, Lorentz attached the problem from the point of view of the mechanics of the 

absorption of radiation by molecules. He explained the absorption and dispersion of light employing the hypothesis that the molecules 

of ponderable bodies contain small bodies that are set in vibration by the periodic forces existing in a beam of light or radiant heat. If 

a molecule does not undergo a collision its vibrating electron will follow the electric force associated with the incident radiation. If 

the frequency of the incident radiation is the same as the natural vibrational frequency of the electron, a classical resonance condition 

may be expected to prevail and but for a regulating factor, the increase of the vibrational amplitude with limit would be expected. The 

collision of the molecule with another will serve to limit this amplitude increase, for Lorentz, supposed that by the encounter the 

molecular vibration would be changed into a vibration of a different kind. The electron will carry out this new vibration until another 

collision essentially stops this vibration and starts still another one and so on. Thus in this way, in analogy to a resistance proportional 

to the velocity, the amplitude of the vibrations will be limited.       Thus if the collisions 

are both strong and adiabatic the molecules, after impact, can be regarded as distributed by the Boltzmann law appropriate to the 

instantaneous value of the field at collision. Weak collisions, on the other hand, leave the molecule with a hangover. Here the 

assumption is made that any individual collision has but little effect in disturbing the original orientation or polarization of the 

molecule so that an appropriate change in distribution is obtained only as of the result of a large number of impacts. The well-known 

theory of Debye on the relaxation behavior of electric liquids may be regarded as the embodiment of the weak collision-mechanism 

for the non-resonant case.  It is therefore of interest to obtain precise information on the relaxation times of polyatomic molecules in 

a gaseous assembly for an understanding of the mechanism of energy transfer. In this connection, the study of the absorption 

coefficients and the refractive indices of the infra-red active polyatomic gases offer an alternative method of determining relaxation 

times with a fair degree of accuracy over a wide range of temperatures.      

II. THEORY      

             A strict theory of dispersion would, of course, require us to consider the complete Hamiltonian of the molecule taking 

account of the various interactions in the molecule, and to treat the problem in a strictly quantum mechanical way.    

(a) Absorption Coefficient and Refractive index:       

The present section considers the gas to isotropic and to be polarized only in the direction of the applied field. Let 𝑋,′ 𝑌,′ 𝑍′ be the 

space fixed axes (𝛴′ ) and X, Y, Z the axes fixed in the molecule ( ). Let the direction of the applied field be along 𝑍′ axis. In terms 

of the displacements of atoms k, of charge𝑒𝑘, constituting the molecule, the effective polarization of a single molecule is given by 

       

 𝑃𝑧′ = 𝛴𝑘𝑒𝑘 𝑧𝑘
′  𝑘′⃗⃗  ⃗  =  𝛴𝑘𝑒𝑘 ( 𝑋𝑘 𝑖   + 𝑌𝑘  𝑗⃗⃗   + 𝑍𝑘 𝑘⃗   )                          (1.1) 

            where 𝑋𝑘 , 𝑌𝑘 , 𝑎𝑛𝑑 𝑍𝑘 are the components of 𝑧𝑘
′ . (𝑖 ,  𝑗⃗⃗ , 𝑘⃗  are the vectors in 𝜮, 𝑘′⃗⃗  ⃗ is unit vector along z’ axis.). Because of the 

isotropy of the gas, we may regard𝑋𝑘, 𝑌𝑘 , 𝑍𝑘 as the displacements of the atoms averaged overall orientation of the molecules along 

the 𝜹body fixed axes, under the influence of the external field 𝐸𝑧′. Indicating the averaging process relevant to random orientations 

by a single bar and introducing the normal co-ordinates 𝛼𝐸𝑗, corresponding to the frequency 𝜔𝑗 of the jth normal modes, we write 

for the magnitude of the polarization:    

∣ 𝑃𝑧′∣ = ∑ √(
𝛿𝑃𝑥

𝛿𝐸𝑗
)
0

2

+ (
𝛿𝑃𝑦

𝛿𝐸𝑗
)
0

2

+ (
𝛿𝑃𝑧

𝛿𝐸𝑗
)
0

2

 𝐸̅𝑗𝑗    =∑ 𝐴𝑗𝐸𝑗𝑗         (1.2)  

           where 𝑃𝑥 , 𝑃𝑦,𝑃𝑧 are the polarizations along the x, y, and z directions. If there are 𝑁𝑗 molecules in the jth mode distributed 

over the amplitudes  𝐸̅𝑗 (or the energy levels of the jth mode). We shall indicate the average value of  𝐸̅𝑗 by𝐸𝑗̿, the additional bar 

indicating the average over all the amplitudes in the jth mode. The total polarization of the gas can then be written as; 

    

  ∣𝑃𝑧′ ∣ = ∑ 𝐴𝑗𝑁𝑗𝐸̿𝑗𝑗                                               (1.3a) 

We may regard         
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                                   𝑃𝑗 =𝐴𝑗𝐸̿𝑗                                       (1.3b) 

as the mean polarization associated with each mode j. We shall see later that this quantity provides a convenient transition from 

classical to quantum mechanical theory. The problem is to determine 𝐸̿𝑗 . Using the equation of motion for𝐸̅𝑗, we find that 𝐸̿𝑗 is 

given by                                                                                         

𝐸̿𝑗(t) = 𝐸𝑧
0 𝑒𝑖𝜔𝑡 𝐴𝑗 (𝑓𝑗

′ − 𝑓𝑗
")       (1.4) 

where 𝐸𝑧
0 𝑒𝑖𝜔𝑡 is the applied field of angular frequency 𝜔 and𝑓𝑗

′,  𝑓𝑗
"are quantities depending only on the properties of the gas 

(resonance frequency, relaxation time). Depending on the complex susceptibility by      

    

  ∣ 𝑃𝑧′ ∣ = (𝑋′+𝑖𝑋") ∣   𝐸𝑧′ ∣                                   (1.5) 

We obtain the real and imaginary parts of the susceptibility.   

        𝑋′= ∑ 𝐴𝑗
2𝑁𝑗𝑗 𝑓𝑗

′            

  𝑋"=  −∑ 𝐴𝑗
2𝑁𝑗𝑗 𝑓𝑗

"      

The absorption coefficient 𝛾 and the refractive index n are given by Maxwell’s theory:    

                                                                                                       𝛾 = − 
4𝜋𝜔

𝑐
  𝑋"         

              𝑛2 − 1 = 4𝜋𝑋′         (1.6) 

Hence,                                                              𝛾=  
4𝜋𝜔

𝑐
 ∑ 𝐴𝑗

2𝑁𝑗𝑗 𝑓𝑗
"          

    𝑛2 − 1 = 4𝜋 ∑ 𝐴𝑗
2𝑁𝑗𝑗 𝑓𝑗

′                                                 (1.7) 

(b) Forced Oscillation of a Polyatomic Molecule:        

In term of the normal coordinates, the motion of the polyatomic molecule under the action of the periodic field is given by:    

                                                𝐸̅𝑗
̇ + 𝜔𝑗

2𝐸𝑗 = 𝑄
𝑗
          

 Where 𝑄𝑗is defined in terms of the applied field by:   

∑ 𝑄̅𝑗𝐸̅𝑗𝑗  = 𝐸𝑧′ ∑ 𝐴𝑗 𝑗
𝐸̅𝑗 

(The single bar indicates that we are considering the vibrational motion averaged over all the orientations of the molecules.) From 

the definition of polarization (1.2), we get      

                                                                                              𝑄̅𝑗 = 𝐸𝑧′𝐴𝑗      

                                                 Writing  𝑄̅𝑗 = 𝑄𝑗
0𝑒𝑖𝜔𝑡 and  𝐸𝑧′ = 𝐸𝑧′

0  𝑒𝑖𝜔𝑡   we have        

𝑄𝑗
0̅̅̅̅   =  𝐸𝑗

0 𝐴𝑗 

The complete solution of the differential equation is given by   

   𝐸̅𝑗 = 
𝑄𝑗

0̅̅ ̅̅  𝑒𝑖𝜔𝑡 

𝜔𝑗 
2− 𝜔2 + 𝐶𝑗

′𝑒𝑖𝜔𝑗𝑡  + 𝐶𝑗
"𝑒− 𝑖𝜔𝑗𝑡       (1.8)    

             To determine 𝐶𝑗
′ and 𝐶𝑗

" we assume the following initial condition as in the theory of collision broadening due to Van-

Vleck and Weisskopf. At any time t = t0 the class of molecules coming into mutual collisions is restored to the thermal equilibrium 

state appropriate to the instantaneous value of the field at t0.    

            This assumption yields the value of 𝐸̅𝑗 and 𝐸̅𝑗
̇  at t0 from which 𝐶𝑗

′ and 𝐶𝑗
" can be evaluated. These averages are given by :     

𝐸̅𝑗(t0) = 
∫ ∫𝐸𝑗
+∞
−∞  𝑒

−𝐻(𝑡0)
𝑘𝑇   𝑑𝐸𝑗𝑑𝐸𝑗

∫ ∫ 𝑒
−𝐻(𝑡0)

𝑘𝑇   𝑑𝐸𝑗𝑑𝐸𝑗
+∞
−∞  

 

𝐸̅𝑗
̇ (t0) = 

∫ ∫ 𝐸̇𝑗
+∞
−∞  𝑒

−𝐻(𝑡0)
𝑘𝑇   𝑑𝐸𝑗𝑑𝐸𝑗

∫ ∫ 𝑒
−𝐻(𝑡0)

𝑘𝑇   𝑑𝐸𝑗𝑑𝐸𝑗
+∞
−∞  

 

 

 

The Hamiltonian H(t) is the sum of the unperturbed Hamiltonian   

H0 =  
1

2
 ∑ (𝜔𝑗

2𝐸𝑗
2 + 𝐸̇𝑗

2)𝑗  

and the perturbation energy due to the interaction of the molecule with the applied field:       

    

dH = −𝐸𝑧′
0 𝑒𝑖𝜔𝑡 ∑ 𝐴𝑗𝐸𝑗𝑗  

These averages are easily evaluated, and we find          

                             𝐸̅𝑗(t0) = 
(𝐴𝑗𝐸𝑧′)

𝜔𝑗
2⁄   and  𝐸̅𝑗

̇ (t0) = 0                       (1.9) 

the complete solution with the constants evaluated is then     

𝐸̅𝑗(t0)= 
𝐸
𝑧′
0̅̅ ̅̅ ̅  𝐴𝑗 𝑒

𝑖𝜔𝑡 

𝜔𝑗 
2− 𝜔2  [1 −

1

2
 
𝜔𝑗−𝜔

𝜔𝑗
 𝑒𝑖(𝜔𝑗−𝜔)

𝜃

− 
1

2
 
𝜔𝑗−𝜔

𝜔𝑗
 𝑒𝑖(𝜔𝑗−𝜔)

𝜃
 ] +  

𝐸
𝑧′
0̅̅ ̅̅ ̅  𝐴𝑗 𝑒

𝑖𝜔𝑡 

2𝜔𝑗 
2  [𝑒𝑖(𝜔𝑗−𝜔)

𝜃

+ 𝑒−𝑖(𝜔𝑗−𝜔)
𝜃

]                     (1.10)  

Where 𝜃 = (t – t0). This gives the normal coordinates at any time t, of a class of molecules which have all suffered collisions 𝜃 

seconds before t. 

III. THE DENSITY MATRIX REGARDING QUANTUM THEORY OF DISPERSION: 

 The present section briefly indicates the out-line of the statistical quantum theory where the average polarization is formed 

from the density matrix P(t) of the whole gas at time t under the influence of the external field   

       𝑃𝑧̿(t) = ∑ (𝜇𝑧)𝑚𝑡  𝑃𝑚𝑡(𝑡)𝑚𝑡        (1.11) 

The double bar indicates the two-folds averaging process giving the quantum mechanical average or the expectation value of the 

dipole moment operator 𝜇𝑧 and the statistical average. The density matrix of the gas in thermal equilibrium, free from the external 

radiation field, is given by the Boltzmann distribution      
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                 (𝑃0)𝑚𝑛 =  
𝑒
−𝐸𝑚/𝐾𝑇

∑𝑒
−𝐸𝑚/𝐾𝑇

 𝜎𝑚𝑛 = 𝑃𝑚𝜎𝑚𝑛           (1.12) 

where 𝐸𝑚 are the Eigen values of the unperturbed Hamiltonian 𝐻0 of the molecules. The density operator of a class of molecules 

that suffer collisions at t=t0 and which are under the influence of the external field is denoted by P(t0,t0). At the time of collision 

t0, the thermal equilibrium states appropriate to the value of the field at t0 is assumed to be valid for the class of molecules in 

question and is given by:           

P (t0, t0) =  
𝑒−𝐻(𝑡)/𝐾𝑇

∑𝑒−𝐻(𝑡)/𝐾𝑇                       (1.13) 

where H(t) is the Hamiltonian of the molecule perturbed by the field: 

                       H (t) = 𝐻0 − 𝜇𝑧𝐸𝑧
0 𝑐𝑜𝑠𝜃                                (1.14) 

Thereafter under the influence of the field as the class of the molecules is colliding at t0 absorb energy, the system deviates from 

the thermal equilibrium state and the density matrix develop from P(t0, t0) to P(t,t0) according to the equation of motion      

      
P(t,t0)

𝑡
 =−

𝑖

ћ
 [𝐻(𝑡)P(t, t0) − P(t, t0)H(t)]    (1.14) 

The density operator for the whole gas is obtained by averaging over all classes of molecules at time t  

                                                  P(t) = 
1

𝜏
 ∫ P(t, t0)e

−(t−t0) d(t − t0)
∞

0
                      (1.15) 

The main result of the theory is that the time development of the density matrix for the whole gas under the influence of the 

external field 𝐸𝑧
0 𝑒𝑖𝜔𝑡 is given by: 

   𝑃𝑙𝑚(𝑡) = 𝑃𝑙  𝜎𝑙𝑚+𝐸𝑧
0(𝜇𝑧)𝑙𝑚 (𝐵𝑙𝑚𝑒𝑖𝜔𝑡 + 𝐵𝑙𝑚

∗ 𝑒−𝑖𝜔𝑡)    (1.16) 

Where 𝐵𝑙𝑚 are complex constant.       

Noting that            

∑ (𝜇𝑧)𝑙𝑚𝑙𝑚  𝑃𝑙𝜎𝑙𝑚 = ∑ (𝜇𝑧)𝑚𝑚𝑚  𝑃𝑚𝜎𝑚𝑚 

Since, (𝜇𝑧)𝑚𝑚 = 0,  we get on pairing terms involving the same indices l, m,  

                   𝑃𝑧̿(t) = 𝐸𝑧
0 ∑ (𝜇𝑧)𝑚𝑙

2
𝑚𝑙  [(𝐵𝑙𝑚 + 𝐵𝑚𝑙)𝑒

𝑖𝜔𝑡 + (𝐵𝑙𝑚
∗ + 𝐵𝑚𝑙

∗ )𝑒−𝑖𝜔𝑡]     (1.17) 

For the susceptibility we get,           

X = 𝑋′ + 𝑋" = 2∑ (𝜇𝑧)𝑚𝑙
2

𝑚𝑙  (𝐵𝑙𝑚 + 𝐵𝑚𝑙) 

where X is defined by        

𝑃𝑧̿(t) = 
1

2
 𝐸𝑧

0 (𝑋′𝑒𝑖𝜔𝑡 + 𝑋"𝑒−𝑖𝜔𝑡) 

writing            

𝐵𝑙𝑚  = 𝐵𝑙𝑚
′  + 𝑖 𝐵𝑚𝑙

"  

and using (1.6) we get the following expression for the absorption coefficient and the refractive index:   

   

 𝛾 = − 
𝜎𝜋𝜔

𝐶
 ∑ (𝜇𝑧)𝑚𝑙

2
𝑚𝑙  (𝐵𝑙𝑚

" + 𝐵𝑚𝑙
" )      (1.18) 

 𝑛2 − 1= 𝜎𝜋 ∑ (𝜇𝑧)𝑚𝑙
2

𝑚𝑙  (𝐵𝑙𝑚
′ + 𝐵𝑚𝑙

′ )     (1.19)   

 With the approximation that 
𝜇𝐸𝑧

0

𝐾𝑇
 is small compared with unity and neglecting quantities of the second order 𝐸𝑧

0(𝜇𝐷 − 𝐷𝜇), 

where D is the operator representing the deviation from the thermal equilibrium state, assumed to be very small compared with 

the equilibrium operator P(t,t0), we get for the time development of P(t), through equations (1.11), (1.12), (1.13), (1.14) and 

(1.15):   

𝑃𝑚𝑛(𝑡)=𝑃𝑚𝜎𝑚𝑛+ 
(𝜇𝑧)𝑚𝑛

4𝜋𝐾𝑇
𝐸𝑧

0(𝑃𝑚 + 𝑃𝑛) [(1 −
𝜔

𝜔+𝜔𝑚𝑛+𝑖𝜏𝑚𝑛
−1 ) 𝑒𝑖𝜔𝑡 (1 −

𝜔

𝜔−𝜔𝑚𝑛+𝑖𝜏𝑚𝑛
−1 ) 𝑒−𝑖𝜔𝑡]          (1.20) 

On comparing with (4.26) we get:     

 𝐵𝑚𝑛
′  = 

1

4𝜋𝐾𝑇
 (𝑃𝑚 + 𝑃𝑛) (1 −

𝜔(𝜔+𝜔𝑚𝑛)

(𝜔+𝜔𝑚𝑛)2+𝜏𝑚𝑛
−2 )     (1.21)  

 𝐵𝑚𝑛
"  = −

𝜔

4𝐾𝑇
(𝑃𝑚 + 𝑃𝑛) (

𝜏𝑚𝑛
−1

(𝜔+𝜔𝑚𝑛)2+𝜏𝑚𝑛
−2 )                   (1.22) 

Hence the absorption coefficient and the refractive index of gas is 

 𝛾 = 
𝜎𝜋2𝜐2𝑁

𝐶𝐾𝑇
  ∑ (𝜇𝑧)𝑛𝑚

2
𝑚𝑛  (𝑃𝑚 + 𝑃𝑛)   [

1

2𝜋𝜏𝑚𝑛

(𝜐+𝜐𝑚𝑛)2+(
1

2𝜋𝜏𝑚𝑛
)
2 +

1

2𝜋𝜏𝑚𝑛

(𝜐−𝜐𝑚𝑛)2+(
1

2𝜋𝜏𝑚𝑛
)
2 ]          (1.23) 

𝑛2 − 1= 
4𝜋𝑁

𝐾𝑇
  ∑ (𝜇𝑧)𝑛𝑚

2
𝑚𝑛  (𝑃𝑚 + 𝑃𝑛) 

[1 −
½(

𝜐

𝜐𝑚𝑛
) + ½(

𝜐

𝜐𝑚𝑛
)
2

( 𝜐+𝜐𝑚𝑛)2+ (
1

2𝜋𝜏𝑚𝑛
)
2 +

½(
𝜐

𝜐𝑚𝑛
) − ½(

𝜐

𝜐𝑚𝑛
)
2

(𝜐−𝜐𝑚𝑛)2+ (
1

2𝜋𝜏𝑚𝑛
)
2] is placed in an external magnetic field. So, some components lines are observed 

corresponding to different energies due to the splitting of degeneracy.   

IV. COMPARISON WITH VAN VLECK-WEISSKOPF FORMULA:      

                The formulae (1.23) and (1.24) derived from the quantum theory of this section and the formulae (1.8) and (1.9) derived 

from the classical theory and translated into quantum theory by the correspondence (1.7) are seen to be different. The absolute 

temperature T makes its appearance in the quantum mechanical formulae of this section, whereas it does not figure at all in the 

formula of the previous section (Nevertheless the half-width measured from in both the cases and hence the relaxation times 

would be the same). We briefly recall that in the quantum theory of this section only the approximation 𝜇𝑧𝐸𝑧 ≪ 𝐾𝑇 is so far 

involved whereas in the theory outlined in the previous section no approximation of any kind has been made and in the previous 

section transition to quantum mechanics is made through (1.7). If instead of the prescription (1.7) for the transition from classical 

to the quantum theory we consider the dipole moment 𝑃𝑗 for this transition in the following manner, the classical theory is seen 

to lead to the factor involving the temperature as in (1.23). We have for the average value of 𝜉𝑗̅ at 𝑡0 the expression     
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𝜉𝑗̅(𝑡0) = 
𝐴𝑗𝐸

𝜔𝑗
2   =  

𝐴𝑗
2𝜉𝑗

2𝐸

𝐴𝑗𝜔𝑗
2𝜉𝑗

2 =  
 𝑃𝑗𝑃𝑗

∗𝐸

𝐴𝑗𝜔𝑗
2𝜉𝑗

2                                                (1.25) 

                  where 𝑃𝑗 is the dipole moment associated with the jth mode. In statistical equilibrium, we may associate each of the 

two degrees of freedom in vibrational motion with the energy ½ KT. Hence the average value of 𝜉𝑗̅(𝑡0) is:          

𝜉𝑗̅(𝑡0) =  
∣𝜇𝑖𝑗 ∣

2

𝐴𝑗𝐾𝑇
                                  (1.25) 

By using the initial value of 𝜉𝑗̅(𝑡0) given by (1.25) which imply means replacing 𝑁𝑗 (
𝐴𝑗

2

𝜔𝑗
2) in the classical formula (1.5) {refer 

definition of 𝐴𝑗 in (1.2)} by  
∣𝜇𝑖𝑗 ∣

2

𝐾𝑇
  (𝑁𝑖 + 𝑁𝑗).  We recover the formula (1.13) for 𝛾. However, we note that while there is perfect 

agreement between the two theories so far as 𝛾 as concerned, there is a difference between them with the refractive index.    

Further points of comparison are detailed below:     

(a) At low frequency:     

 At microwave and radiofrequency the approximate condition 
ℎ𝜐𝑚𝑛

𝐾𝑇
 ≪ 1 is valid. Then      

𝑃𝑚 + 𝑃𝑛 ~ 2. 
𝑒−(𝐸𝑚+𝐸𝑛) 2𝐾𝑇⁄

∑ 𝑒𝐸𝑖 𝐾𝑇⁄
𝑖

 

                                                                           or, 𝑃𝑚 − 𝑃𝑛 ~ 
ℎ𝜐𝑚𝑛

2𝐾𝑇
 𝑃𝑚 + 𝑃𝑛, 

The absorption coefficient and refractive index are given by :    

        𝛾 = 
𝜎𝜋2𝜐2𝑁

ℎ𝐶
  ∑ ∣ (𝜇𝑧)𝑚𝑛 ∣2𝑚𝑛  (

𝑃𝑚−𝑃𝑛

𝜐𝑚𝑛
) [

1

2𝜋𝜏𝑚𝑛

(𝜐+𝜐𝑚𝑛)2+(
1

2𝜋𝜏𝑚𝑛
)
2 +

1

2𝜋𝜏𝑚𝑛

(𝜐−𝜐𝑚𝑛)2+(
1

2𝜋𝜏𝑚𝑛
)
2 ]    (1.26) 

                𝑛2 − 1= 
4𝜋𝑁

ℎ
  ∑ ∣ (𝜇𝑧)𝑚𝑛 ∣2𝑚𝑛  (

𝑃𝑚−𝑃𝑛

𝜐𝑚𝑛
) [1 − 𝜐𝑚𝑛

2
½(

𝜐

𝜐𝑚𝑛
) + ½(

𝜐

𝜐𝑚𝑛
)
2

( 𝜐+𝜐𝑚𝑛)2+ (
1

2𝜋𝜏𝑚𝑛
)
2 + 𝜐𝑚𝑛

2
½(

𝜐

𝜐𝑚𝑛
) − ½(

𝜐

𝜐𝑚𝑛
)
2

(𝜐−𝜐𝑚𝑛)2+ (
1

2𝜋𝜏𝑚𝑛
)
2]                       (1.27)  

Making use of the line shape function      

                                ∮(𝜐𝑖𝑗 , 𝜐) = − ʄ(𝜐𝑖𝑗 , 𝜐)  =  
1

𝜋
 
𝜐

𝜐𝑖𝑗
 [

1

2𝜋𝜏𝑖𝑗

(𝜐𝑖𝑗+𝜐)
2
+(

1

2𝜋𝜏𝑖𝑗
)

2 +

1

2𝜋𝜏𝑖𝑗

(𝜐𝑖𝑗−𝜐)
2
+(

1

𝜏𝑖𝑗
)

2 ] 

We may write for 𝛾:         

                     𝛾 = 
𝜎𝜋3𝑁

ℎ𝐶
 ∑ ∣ (𝜇𝑧)𝑚𝑛 ∣2𝑚𝑛 (𝑃𝑚 − 𝑃𝑛) ʄ(𝜐𝑚𝑛 , 𝜐)                                             (1.28) 

This is Van Vleck-Weisskopf formula (1.8). it seems fortuitous that the two formulae for 𝛾 (1.8) and (1.23), the former derived 

classically and then transformed through (1.7) and the latter derived in a strictly quantum mechanical way using the density matrix, 

agree only in the limiting case  
ℎ𝜐𝑚𝑛

𝐾𝑇
 ≪ 1.       

(b) Other limiting cases:        

 (i) We recover the special case of the static susceptibility, X = 
𝑛2−1

4
 by putting (

𝜐

𝜐𝑚𝑛
)= 

1

2𝜋𝜏𝑚𝑛
 = 0. From (1.23) and (1.24): 

 𝛾 = 0,       X= 
𝑁

𝐾𝑇
  ∑ (𝜇𝑧)𝑛𝑚

2
𝑚𝑛  (𝑃𝑚 + 𝑃𝑛)                        (1.29) 

This is essentially the Langevin formula X= 
𝑁𝑃2

3𝐾𝑇
 .    

The factor ⅓ can be accounted for by taking the angle effect in the polarization energy.      

 (ii) For extremely long relaxation times, which can be mathematically approximated by 1→ ~, 𝛾 = 0.                       

However, if radiation damping were considered even in this limiting case there will be attenuation. The refractive index is given 

by the following expression having the significant resonance factor which accounts for anomalous dispersion,   
4𝜋𝑁

𝐾𝑇
  ∑ ∣ (𝜇𝑧)𝑚𝑛 ∣2𝑚𝑛  (𝑃𝑚 + 𝑃𝑛) 

𝜐𝑚𝑛
2

𝜐𝑚𝑛
2 − 𝜐2                                                      (1.30) 

The formula for n of the previous section leads to the same result even though the general formula for the refractive index of the 

two sections (1.2) and (1.3) are different. (iii). When the relaxation times are extremely short the susceptibility and the refractive 

index become independent of the frequency of the applied field and attain the static value (1.28). But this case is very likely not of 

much physical interest since, at high pressures under which this limiting case arises, it would be necessary to consider multiple 

collisions.  

V. CONCLUSION:         

The main result of the theory is that the time development of the density matrix for the whole gas under the influence of the 

external field 𝐸𝑧
0 𝑒𝑖𝜔𝑡. We shall find that these formulae are not at variance with those developed in section 3 using the density 

matrix and a strict quantum mechanical approach. The standard procedure of going from the classical to the quantum mechanical 

theory is used. The present section now brings in the main idea of this discussion that the time of collision t0 is relevant to the mode 

in the question since the energetic changes of the modes of vibration will occur at different times. The time of energy transfer to the 

lowest mode is different from that to the other modes in general since energy requires a finite time to go into the higher modes 

especially if the frequency gap is large.     
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