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Abstract 

This paper attempts to study the negative pedal of a curve with fixed point O is therefore the envelope 

of the lines perpendicular at the point M to the lines. In inversive geometry, an inverse curve of a given 

curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with 

center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. 

The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called 

the center of inversion, the circle the circle of inversion, and k the radius of inversion. 

An inversion applied twice is the identity transformation, so the inverse of an inverse curve with respect 

to the same circle is the original curve. Points on the circle of inversion are fixed by the inversion, so its inverse 

is itself. is a function that "reverses" another function: if the function f applied to an input x gives a result of y, 

then applying its inverse function g to y gives the result x, and vice versa, i.e., f(x) = y if and only if g(y) = x. 

The inverse function of f is also denoted.  

Joseph-Louis Lagrange.The Lagrange inversion theorem (or Lagrange inversion formula, which we abbreviate 

as LIT), also known as the Lagrange--Bürmann formula, gives the Taylor series expansion of the inverse 

function of an analytic function. The theorem was proved by Joseph-Louis Lagrange (1736--1813) and 

generalized by the German mathematician and teacher Hans Heinrich Bürmann ( --1817), both in the late 18th 

century. The Lagrange inversion formula is one of the fundamental formulas of combinatorics. In its simplest 

form it gives a formula for the power series coefficients of the solution f(x) of the function 

equation f(x)=xG(f(x)) f(x)=xG(f(x)) in terms of coefficients of powers of G.Not all functions have inverse 

functions. Those that do are called invertible. For a function f: X → Y to have an inverse, it must have the 

property that for every y in Y, there is exactly one x in X such that f(x) = y. This property ensures that a 

function g: Y → X exists with the necessary relationship with f. Using Riemann-Liouville fractional differential 

operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The 

required basic definitions, lemmas, and theorems in the fractional calculus are presented.  

Key words:  differential operator, Lagrange inversion theorem, pedal, curve. 

Introduction 

A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a 

fractional version of Lagrange's expansion in more than one unknown function is generalized. 
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The pedal of a curve  with respect to a point  is the locus of the foot of the perpendicular from  to 

the tangent to the curve. More precisely, given a curve , the pedal curve  of  with respect to a fixed 

point  (called the pedal point) is the locus of the point  of intersection of the perpendicular from  to 

a tangent to . The parametric equations for a curve  relative to the pedal point  are given by 

  

 

(1) 

  

 

(2) 

If a curve  is the pedal curve of a curve , then  is the negative pedal curve of  (Lawrence 1972, pp. 47-

48). 

When a closed curve rolls on a straight line, the area between the line and roulette after a complete 

revolution by any point on the curve is twice the area of the pedal curve (taken with respect to the generating 

point) of the rolling curve. As an example, consider the real-valued function of a real variable given by f(x) = 

5x − 7. Thinking of this as a step-by-step procedure (namely, take a number x, multiply it by 5, then subtract 7 

from the result), to reverse this and get x back from some output value, say y, we would undo each step in 

reverse order. In this case, it means to add 7 to y, and then divide the result by 5. In functional notation, this 

inverse function would be given by, 

{\displaystyle g(y)={\frac {y+7}{5}}.}With y = 5x − 7 we have that f(x) = y and g(y) = x. 
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The pedal curve of an astroid 

   

(1) 

   

(2) 

with pedal point at the center is the quadrifolium 

   

(3) 

   

(4) 

 

Objective: 

This paper intends to explore pedal and negative pedal as inverse concepts. Also, to find Negative pedal of 

a curve C that can be defined as a curve C' such that the pedal of C is C'.  Stating negative pedal curve is a 

plane curve that can be constructed from another plane curve C and a fixed point P on that curve. 
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An ellipse with parametric equations 

 

 

For an ellipse with parametric equations 

   

(1) 

   

(2) 

the negative pedal curve with respect to the origin has parametric equations 

  

 

(3) 

  

 

(4) 

  

 

(5) 

  

 

(6) 
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(7) 

  

 

(8) 

where 

 

(9) 

is the distance between the ellipse center and one of its foci and 

 

(10) 

is the eccentricity. For , the base curve is a circle, whose negative pedal curve with respect to the origin 

is also a circle. For , the curve becomes a "squashed" ellipse. For , the curve 

has four cusps and two ordinary double points and is known as Talbot's curve (Lockwood 1967, p. 157). 

 

Taking the pedal point at a focus (i.e., ) gives the negative pedal curve 
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(11) 

  

 

(12) 

Lockwood (1957) terms this family of curves Burleigh's ovals. As a function of the aspect ratio  of an 

ellipse, the neagtive pedal curve varies in shape from a circle (at ) to an ovoid (for ) to 

a fish-shaped curve with a node and two cusps to a line plus a loop to a line plus a cusp. 

The special case of the negative pedal curve for pedal point  and  (i.e., ) is 

here dubbed the fish curve. 

 

Given a curve  and  a fixed point called the pedal point, then for a point  on , draw 

a line perpendicular to . The envelope of these lines as  describes the curve  is the negative pedal of . It 

can be constructed by considering the perpendicular line segment  for a curve  parameterized 

by . Since one end of the perpendicular corresponds to the point , .  

The equations of the negative pedal curve   

 

Another end point can be found by taking the perpendicular to the  line, giving 

 

(1) 

or 

   

(2) 

   

(3) 

Plugging into the two-point form of a line then gives 

 

(4) 

or 

 

(5) 

Solving the simultaneous equations  and  then gives the equations of the negative pedal 

curve as 
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(6) 

  

 

(7) 

If a curve  is the pedal curve of a curve , then  is the negative pedal curve of  (Lawrence 1972, pp. 47-

48). 

The following table summarizes the negative pedal curves for some common curves. 

Curve pedal point  negative pedal curve 

cardioid negative pedal curve  origin  circle  

cardioid negative pedal curve  point opposite cusp cissoid of Diocles  

circle negative pedal curve inside the circle ellipse 

circle negative pedal curve outside the circle hyperbola  

ellipse negative pedal curve with  center Talbot's curve  

ellipse negative pedal curve with  focus  ovoid 

ellipse negative pedal curve with  focus  two-cusped curve 

line any point parabola  

parabola negative pedal curve  origin  semicubical parabola  

parabola negative pedal curve  focus  Tschirnhausen cubic  

 

 Conclusion 

A surface has negative curvature at a point if the surface curves away from the tangent plane in two different 

directions. The classic example is a saddle, which can be found on your body in the space between your thumb 

and forefinger, or along the inside of your neck. The concept of a surface of negative curvature can be 

generalized, for example, with respect to the dimension of the surface itself or the dimension and structure of 

the ambient space. 
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Surfaces of negative curvature locally have a saddle-like structure. This means that in a sufficiently small 

neighbourhood of any of its points, a surface of negative curvature resembles a saddle , not considering the 

behaviour of the surface outside the part of it that has been drawn). The local saddle-like character of the surface 

is clearly illustrated in this figure, which shows the principal sections of the surface at an arbitrary point OO. 

Let 1/R11/R1, 1/R21/R2 be their normal curvatures, i.e. the principal curvatures at the point OO( cf. Principal 

curvature). According to the classical definition, the Gaussian curvature at OO is the 

number K=1/R1R2K=1/R1R2. Since K<0K<0, the principal curvatures have different signs, for which reason 

the principal sections are convex in opposite directions; in Fig.1bthe section 0202 is convex in the direction of 

the normal nn, while the other is convex in the opposite direction, which fits in with the saddle-like character 

of the surface. The topological structure in the large ( "globally" ) of a surface of negative curvature can be very 

different.  
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