
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908A81 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 917

COMPUTING TECHNIQUES USING

HETEROGENOUS MULTICORE

ARCHITECTURE

Vempali Sravani1 Palavali Siva lakshmi2

1. Assistant Professor, Guest Faculty (cse), IIIT Rk valley, Idupulapaya,

2. Assistant Professor, IIIT RKValley, Idupulapaya.

ABSTRACT: The one of the power sufficient computing mechanism is the usage of heterogeneous multi-core

processors. It has the ability to meet different resource requirements of various applications in a workload. The

challenge of these heterogeneous multi-core processors is the scheduling of programs in a workload. For this

purpose, it uses a scheduling mechanism that has a fuzzy logic to calculate suitability between programs and

cores. This method achieves 15% average reduction in energy delay product (EDP) when compared to other

scheduling mechanisms. Another one we use the Intel’s Quick IA heterogeneous prototype platform for

studying scheduling.

Keywords: Heterogeneous, computing mechanism.

INTRODUCTION:

The heterogeneous multi-core processors

provide the architecture capability to accommodate

diverse computation requirements of the

applications. Then scheduling Techniques controls

this architecture for energy efficient computing

[1.3]. The program scheduling in these

heterogeneous multi-core systems mainly focuses

on scheduling of subtasks [2]. Here the program

inherent characteristics shapes its hardware

resource demands and used to guide the program

scheduling.

As more and more core are integrated on

chips due to increase in transistor costs [by

MOORE’s law] hence, heterogeneous multi-core

processors are used to provide power[1.2] or

performance tradeoffs.

LITERATIVE REVIEW:

Due to increase in performance and speed,

processor power consumption and ejection of heat

have become key challenge in the design of high

performance systems. For example, P4 processor

currently consumes 50W and processors in future

are accepted to consume approximately 300W.

To overcome this problem the single-ISA

heterogeneous multi-core architecture to reduce

processor power dissipation.

For many applications, core diversity is of

higher value than uniformity, offering much greater

ability to adapt to the demands of the application

for different applications have different resource

requirements during their execution. Sometimes

data have large amount of instruction-level

Parallelism which can be exploited by a core

that can issue demand instructions per cycle.

Demands on execution architecture, but also

that demand can vary between phases of the same

program. We assume the ability to dynamically

switch between cores. This allows the architecture

to adapt to differences between applications,

differences between phases in the same

applications, or changing priorities of the processor

or workload over time.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908A81 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 918

To provide an effective platform for a wide

variety of application execution characteristics and

system priority functions, the cores on the

heterogeneous multi core processor should cover

both a wide and evenly spaced range of the

complexity design space.

1.1. WORKS RELATED TO IT:

Siegel presented static and hybrid heuristic to

schedule the sub tables in heterogeneous systems.

Kumar et al discussed a dynamic scheduling

approach and Chen et al did static application

mapping in heterogeneous approach.

1.2. Dynamic Scheduling:

Till now, PIE scheduling was evaluated in a static

setting, i.e., a workload is scheduled on a given core

for its entire execution. There is a chance to

improve PIE scheduling by dynamically adapting to

workload phase behaviour.

For libquantum, overall performance can be

approximately 10% of the instructions. However,

the time-scale granularity is relatively fine-grained

and much smaller than a typical OS time slice. This

suggests that dynamic hardware scheduling might

be beneficial provided that rescheduling overhead is

low.

Heterogeneous multi-cores:

Heterogeneous multi-cores within a given

power budget provides greater performance and

reduces energy consumption.

Single-ISA heterogeneous multi-cores

are the different core types implement same

instruction-set architecture.

The major problem in design space of single-

ISA heterogeneous multi-core processors is how

best the workloads to be schedule on most

appropriate core type.

Generally, small cores provide good

performance for compute-intensive workloads

whose subsequent instructions are in the dynamic

instruction stream.

1.3 FUZZY INFERENCE SYSTEM (FIS):

 This combines all suitability metrics to

produce a single metric. It uses IF-THEN rules.

To combine these metrics it uses 4 steps

fuzzification, inference, composition,

defuzzification, Fuzzification transforms crisp

input values to fuzzy degrees.

2. SCHEDULING:

Each instrument interval has 50 million

instructions. Every function is assigned with a

unique ID. It consists of four steps:

STEP1:

First one is for identifying boundaries through

analysis. The static instrumentation is implemented

in the LLVM intermediate representation (IR). IR

is a static single-assignment based representation.

Here we start with the call and ret instructions.

STEP2:

A call graph is constructed by the program.

The call graph is based on Ammos et al context

tree.

Each node of call graph is labeled with the

name of the function. To differentiate between these

functions each are provided with a path ID and

node name.

STEP3:

Major program phases can be identified by

using the call graph created in the previous step. A

function is said to be qualified for major problem

phases, if the total number of instructions executed

has to be >= thins and number of invocations should

be greater than or equal to thinvoke.

STEP4:

Here it calculates the energy consumption.

The complexity of this scheduling

mechanism is O(P*N) Where P-- > number of

major program phases detected N-- > number of

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908A81 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 919

different types of processors on chip. If the number

of cores increases then scalability issue will arise.

3. PIE:

Sampling-based selects the best performing

mapping after scheduling dynamically samples

different workload-to-core mappings at runtime.

While such an approach can perform well, due to

periodically migrating workloads between different

core types. it introduces performance overhead. To

overcome these drawbacks, we propose

Performance Impact Estimation (PIE).

To select the appropriate workload-to-core

mapping in a heterogeneous multi-core processor, a

mechanism Performance Impact Estimation (PIE)

can be used.

In PIE performance is estimated if the workload

were to run on another core type.

Dynamic PIE scheduling collects profile

information on basis of per-interval and adjusts the

workload-to-core mapping dynamically, which

exploits time-varying execution behaviour.

The major idea behind PIE is to estimate

workload performance on a different core type.PIE

does this by using CPI stacks. The two major

components in the CPI stack are

1. The base component and the memory

component.

2. The former lumps together all non-memory

related components.

6.1. Dynamic PIE Scheduling:

Till now we have seen PIE model, let’s now see

Dynamic PIE scheduling. PIE scheduling is

applicable to any number of cores of any core type.

Let assume one core of each type, we assume as

many workloads as there are cores, and that

workloads are initially randomly scheduled onto

each core.

PIE scheduling requires hardware support for

collecting CPI stack on each core, the number of

misses, the number of dynamically executed

instructions, and finally the inter-instruction

dependency distance distribution on the big core.

PIE scheduling can be done both in hardware

and software. PIE scheduling is applied in software

if the time interval of scheduling workloads to cores

coincides with a time slice, the hardware would

collect the event counts and the software would

make scheduling decisions.

PIE scheduling requires hardware support for

collecting CPI stack. Collecting CPI stacks on in-

order cores is fairly straightforward and is

implemented in commercial systems.

PIE scheduling requires some profile

information that cannot be collected on existing

hardware. For example while we are running on big

core, PIE requires the ability to measure the inter-

instruction dependency distance distribution for

estimating small-core MLP and ILP.

The PIE model requires that the average

dependency distance D be computed over the

dynamic instruction stream. This can be done by

requiring a table with as many rows as there are

architectural registers. The table keeps track of

which instruction last wrote to an architectural

register.

The cost of computing plan can be determined

by complexity of scheduling algorithm; however

the actual cost of determining the computation plan

is not fixed during the simulation.

CONCLUSION:

Hence, here it represents that how a multi fuzzy

logic approach is used to schedule programs for

every efficient computing using the program

characteristics and how scheduling, simulators are

used to reduce the power consumption and heat

generation results.

The future work includes employing more

program characteristics to determine suitability;

considering the effects of resource sharing and

inter-core communication.

References:-

[1].Multi-core architectures BY Jernej Barbic15-

213, Spring 2007 May 3, 2007.

[2]. Noel Eisley,Vassos Soteriou,Li-Shiuan Peh

High-Level power Analysis for Multi-core chips

NJ08554.

[3]. Jihong Kim Power -Aware Resource

Management Techniques for Low-Power

Embedded Systems.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908A81 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 920

[4]. Baniasadi A.,Moshovos A.,"Instruction flow-

Based Frontend Throttling for Power-Aware High

performance Processors" proceedings of the

International symposium on Low Power Electronics

and Designs ISLPED01,August 2001.

[5]. Brooks D.Tiwari v.Martonosi M. "Wattch:A

Frame work for Architectural -Level Power

Analysis and Optimizations " proceedings of the

International Symposium on computer Architecture,

ISCA,JUNE 2000.

[6]. M.Hamada,y.Ooteguro "Utilizing Surplus

Timing for Power Reduction" proceedings of IEEE

custom Integrated Circuits Conference 2001,pp.89-

92.

[7]. R.Brodersen M.Horowitz, D.Markovic,

B.Nikolic and V.Stojanovic "Methods for True

power Minimization" proceedings ICCAD,San

jose,CA,November 2002.pp 35-42.

[8]. Anand,M.Nightingale and Flinn J.2004.Ghosts

in the Machine:Interfaces for better power

management. proceedings of the International

Conference 23-35.

[9]. Bahar,R.I and Manne 2001.Power and Energy

reduction Via pipeline balancing proceedings of

the International Symposium on Hardware/Software

Code design.

[10]. ACM Computing Surveys, VOL.37,

No.3.September 2005.

http://www.jetir.org/

