
© 2021 JETIR July 2021, Volume 8, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2107265 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c5

AUTOMATIC TIME TABLE GENERATION

USING GENETIC ALGORITHM
 Mrs.G.Maneesha1, T.Deepika2, S.BhanuSri3,N.RaviKumar4 ,P.SivaNagamani5.

1 Assistant Professor, Dept. of Computer Science & Engineering, Dhanekula Institute of Engineering & Technology,

Ganguru, Vijayawada, Andhra Pradesh, India.
2,3,4,5 Bachelor of Technology, Dept. of Computer Science & Engineering, Dhanekula Institute of Engineering &

Technology, Ganguru, Vijayawada, Andhra Pradesh, India.

Correspondence should be addressed to Mrs. G.Maneesha maneesha.gudapati@gmail.com,deepusmiley987@gmail.com

sykambhanusri@gmail.com
Copyright © 2021 Made First Author Name et al. This is an open-access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Timetable generation is a

difficult task but it is very important in

educational institutions. Generating time table

manually occurs conflits. This automatic

timetable generation software generates the

timetables automatically by taking the inputs like

the number of subjects, teachers, the workload of

a teacher, semester, and priority of subjects. In

our project, we are going to use algorithms like

genetic, heuristic, resource scheduling to reduce

the difficulties in generating the timetable.

KEYWORDS-Genetic Algorithm, Resource

Scheduling

I.INTRODUCTION

Although most of the university administrative

work has been computerized, due to the

difficulties involved, the schedule is still done

manually. Manual programming requires a lot of

time and effort. A schedule consists of assigning

a certain resource to objects placed in time and

space so that they fulfill a set of ideal objectives.

The subject of the university class schedule forces

us to find some spaces and classrooms to comply

with the limitations imposed on courses, teachers,

classrooms, etc. This problem is a combinatorial

optimization problem, in which the calculation

time increases exponentially with the increase in

the number of variables. In the last ten years,

various methods have been adopted to solve the

problem of setting timetables for schools and

universities. In our article, this problem is

formulated as a constraint satisfaction problem,

and we discuss various methods that can handle

hard and soft constraints. Under no circumstances

may the strict restrictions be violated. For

example, two classes cannot be assigned to a

teacher at the same time, a student cannot

participate in two classes at the same time, a room

cannot be opened for more than one class at the

same time, and so on. Soft restraints are

necessary, but not critical. For example, a

timetable should be established so that a group of

students does not have to come to the university

for classes. It will help to manage all the periods

automatically and also will be helpful for faculty

to get a timetable on their phone by using the

application. The Maximum and minimum

workload for faculty for a day, week, and month

will be specified for the efficient generation of the

timetable

II.ALGORITHM

Stochastic search algorithms are designed

for problems with inherent random noise or

deterministic problems solved by injected

randomness. In structural optimization, these are

problems with uncertainties of design variables

or those where adding random perturbation to

deterministic design variables is the method to

perform the search (Leng, 2015). The search

favors design with better performance. An

important feature of stochastic search algorithms

is that they can carry out a broad search of the

design space and thus avoid local optima. Also,

stochastic search algorithms do not require

gradients to guide the search, making them a

good fit for discrete problems. However, there is

no necessary condition for an optimum solution

and the algorithm must run multiple times to

make sure the attained solutions are robust. To

handle constraints, penalties can also be applied

to designs that violate constraints. For

constraints that are difficult to be formulated

explicitly, a true/false check is straightforward to

implement. Randomly perturbed designs are

checked against constraints, and only those

passing the check will enter the stage of

performance evaluation. Stochastic search can be

http://www.jetir.org/

© 2021 JETIR July 2021, Volume 8, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2107265 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c6

applied to one design or a population of them

(Leng, 2015), using for example SA or GA,

respectively. Arora (2004) depicts the logic of

SA and GA for the convenience of application.

A monograph devoted to stochastic search and

optimization (Spall, 2003) provides further

details on a broad scope, including mathematical

theory, algorithm design, and applications in

simulation and control. SA is a mimic of the

natural process of annealing in metallurgy

(Kirkpatrick et al., 1983). The algorithm

performs iteratively; the code generates a new

candidate design by randomly perturbing the

variables of the current elite design that performs

best. A unique feature of SA is that its "hill-

climbing" property allows inferior designs to be

accepted in place of elite ones to expand the

search space and prevent the algorithm from

becoming trapped in a low-quality local

minimum (Leng, 2015). The probability that a

suboptimal design is accepted is a function of the

magnitude of performance loss and a user-

selected parameter. This parameter is tightened

as the optimization progresses, reducing the

probability of accepting suboptimal designs

(Leng, 2015). Two influential parameters of the

algorithm are initial "temperature" T0 and the

rate at which this temperature is reduced,

referred to as the "cooling rate" r (Leng, 2015).

The reduction of T occurs when a certain number

(k max) of qualified designs has been evaluated.

SA terminates after the temperature has been

reduced m max times. The product of k max and

n max is the maximum number of objective

function evaluations, commonly used as an

indicator of algorithm efficiency (Leng, 2015).

Convergence is said to occur if the elite design

does not change over a large number of iterations

(n max). See Spall (2003) and Arora (2004) for

more detailed discussions of SA.

GAs are popular stochastic search

algorithms based on the idea of Darwin's

evolution theory (Holland, 1975; Golberg, 1989).

Rather than operating on a single design and its

perturbation, as in SA, GA operates on a

population of designs (Leng, 2015). The designs

are then analyzed and ranked according to their

objective function performance (fitness). The

generation of a new design population includes a

random selection of two designs (parents) and a

random exchange of a portion of their properties

(reproduction). Occasionally, a design is also

randomly perturbed (mutation). This process is

repeated until an entirely new population

(children) is formed (Leng, 2015). Designs with

higher fitness have a higher probability of being

selected as parents, and thus the performance of

the population as a whole should improve as the

optimization progresses (Leng, 2015). Similar to

other stochastic search algorithms, GA

terminates if either a maximum number of

iterations is achieved (k max), or convergence is

detected. Convergence is said to occur if the elite

design does not change over a large number of

iterations (n max) (Leng, 2015). Further

development of GA under the general category

of evolutionary computation and specific details

on its application is available in Spall (2003). A

summary of GA in unconstrained optimization of

CFS columns by Leng et al. (2011) is shown as a

http://www.jetir.org/

© 2021 JETIR July 2021, Volume 8, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2107265 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c7

flow chart in Fig. 6.2. As the flow chart in Fig.

6.1, the objective again is to maximize the

column's axial capacity. In the formulation, the

vector x of a given design is rounded to a user-

specified precision and converted into a binary

string. This is a straightforward process and

facilitates the exchange of information between

designs. Parent selection is based on the roulette

wheel algorithm, and single-point cross-over is

used to exchange information between two

parents. To handle the constraint on overlapping,

the penalty method is used. If element crossing is

detected in a new design, the computed strength

is penalized by subtracting a large number. The

procedure in the flow chart can be readily

applied to other design objectives.

III.RESULTS

IV.CONCLUSION

We have shown that the genetic algorithm method

is very effective and useful for the timetable

problem. Using the method, we describe and

showing the great potential of future orientation

schedules is fairer to students. The framework

appears to be directly applicable to a wide range

of other timing-related issues. For example, the

experimental results show that a key aspect of its

success is the use of the mutation operator

described. The GA framework is successful on

many practical "university department size"

issues, so we seem to be able to demonstrate the

expectation that it may also work well on other

issues of a similar size and nature. In other words,

there is no reason to suspect that the problem you

are testing is particularly easy. Compared with

other practical problems, there is still a lot of

work to be done to understand how performance

adapts to larger and different types of scheduling

problems.

V.REFERENCES

[1] Prashanta Kumar, Shreedhar Sanakar,

Praveen Kumar P, Syed Muhammad

Usman, Vani K A. "Automated Timetable

Generator Using Machine Learning" in

International Research Journal of

Modernization in Engineering Technology

and Science.

[2] V. Abhinaya, K. Sahithi, K. Akaanksha

“Online Application of Automatic Time-

Table Generator” in International Research

Journal of Engineering and Technology

(IRJET).

[3] Akshay puttaswamy, H M Arshad Ali

Khan, Chandan S.V, Parkavi.A ” A Study

On Automatic Timetable Generator” In

International Journal Of Science And

Innovative Engineering & Technology.

[4] Saritha M, Pranav Kiran Vaze, Pradeep,

Mahesh N R “Automatic Time Table

Generator” in nternational Journal of

Advanced Research in Computer Science

and Software Engineering.

[5] Deeksha C S, A Kavya Reddy, Nagambika

A, Akash Castelino, K Panimozhi

“Automatic Timetable Generation System”

in JETIR.

[6] Shraddha Shinde, Saraswati Gurav, Sneha

karme “Automatic Timetable Generation

using Genetic Algorithm” in International

Journal of Scientific & Engineering

Research.

[7] AnujaChowdhary “Time Table Generation

System” .Vol.3 Issue.2, February- 2014.

[8] Dipti Srinivasan Tian Hou Seow Jian Xin

Xu "Automated timetable generation using

multiple context reasoning for university

models", 2002.

[9] Anirudha Nanda “An Algorithm to

Automatically Generate Schedule for

School Lectures Using a Heuristic

Approach”. International Journal of

Machine Learning and Computing.

[10] Bagul, M. R., Pushkar R. Patil, S. C., &

Nagare, S. N. (October 2015). A Novel

Approach for Automatic Timetable

Generation. International Journal of

Computer Applications.

[11] Chowdhary, A., Priyanka Kakde, S. D., &

Rupal Rushiya, D. G. (February 2015).

Timetable Generation System. International

Journal of Computer Science and Mobile

Computing.

[12] S, D. C., A Kavya Reddy, N. A., & K

http://www.jetir.org/

© 2021 JETIR July 2021, Volume 8, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2107265 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c8

Panimozhi, U. S. (April 2015). Automatic

Timetable Generation System. JETIR.

[13] Rathod, P. P., Kamlesh K. Lodhiya, M. P.,

Student CSE, p. S., & S. C. (2016).

Automatic Timetable Generator.

International Journal of Research in Science

& Engineering.

[14] Mittal, D., & Hiral Doshi, M. S. (February

2015). Automatic Timetable Generation

using Genetic Algorithm. International

Journal of Advanced Research in Computer

and Communication Engineering.

[15] M.Nandhini, And S.Kanmani,

"Implementation Of Class Timetabling

Using Multi_Agents", (2009).

[16] Anirudha Nanda, Manisha P. Pai, and

Abhijeet Gole, “An Algorithm to

Automatically Generate Schedule for

School Lectures Using a Heuristic

Approach”.

[17] Asif Ansari, and Prof Sachin Bojewar,

“Genetic Algorithm to Generate the

Automatic Time-Table – An Over View”,

(2014).

[18] Deeksha C S, A Kavya Reddy, Nagambika

A, Akash Castelino, and K Panimozhi,

“Automatic Timetable Generation System”

(2015).

[19] Prof Er. Shabina Sayed, Ansari Ahmed,

Ansari Aamir, and Ansari Zaeem,

“Automated Timetable Generator” (2015).

[20] Sandeep Singh Rawat, Lakshmi

Rajamani,"A timetable prediction for

technical education system using Genetic

Algorithm", Journal of Theoretical and

Applied Information Technology.

[21] Rushil Raghavjee and Nelishia Pillay “An

Application of Genetic Algorithms to the

School Timetabling Problem”, School of

Information Systems and Technology,

Pietermaritzburg Campus University of

KwaZulu-Natal.

[22] A.Scharef,“A survey of Automated

Timetabling-Artificial Intelligence

Review”, 1999.

[23] S.C. Chu and H.L. Fang," Genetic

Algorithms vs. Tabu Search in timetable

Scheduling", IEEE, 1999, Electronics &

Communication dept., University of South

Australia, Australia.

[24] Alberto colorni, Marco Dorigo, Vittoria

Maniezzo, A Genetic Algorithm To Solve

The Timetable Problem, Centre for

Emergent Computing.

[25] J.J Grefenstette, editor. Proceedings of the

First International Conference on Genetic

Algorithms and their Applications. Practice

and Theory of Automated Timetabling VI

Proceedings of The 6th International

Conference.

http://www.jetir.org/

