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Abstract— This Paper basically contains applications of computer vision. In this Paper  we have 

implemented computer vison and its three major application. First of all we have implemented face 

recognition system using Rapid object detection using Boosted Cascade of Simple Features paper published 

by Paul Viola and Michael Jones. Then we further implemented SSD algorithm for object detection using 

paper SSD: Single Shot MultiBox detection published by Wei Liu. At last we have implemented Generative 

Adversarial Network using paper publish by Ian Goodfellow. For implementing SSD we have used VOC 

dataset which is mentioned in paper by Wei Liu. SSD is much better than other normal CNN technique 

having 76.9% accuracy on 512 x 512 model. 
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I. INTRODUCTION 

The main purpose of this Paper  was to get knowledge about applications of computer vision which can be 
beneficial in real life for example self driving cars are currently implementing computer vision, security 
systems are implementing computer vision, etc. 

Issue involved in this area is how to recognize image correctly so that it could be implemented in easy way. 

For this we have used several algorithms for getting better efficiency for example SSD algorithm for object 
detection. Initially it was very difficult to apply such an algorithm due to lack of knowledge in people also 

older algorithms like viola jones take more time in execution having less efficiency. But SSD and GAN has 

done much better work as compared to ancient algorithms The main problem on which we are working on is 
object detection and image generation using features of computer vision. It is a critical task to train a 

computer model to recognize face, objects and generate images according to that. So, for this we have used 
several frameworks to implement this challenging situation. It may take several hours to train our model 

depending on GPU and processor used for implementation. Best GPU is Nvidia and minimum core i5 
processor is needed. Although implementation is same for MAC OS, Windows, Linux. 

 

II. RELATED WORKS 

We have applied viola Jones algorithm, Generative adversarial Networks and SSD for better result. First of 
all, we have applied viola- jones research paper for practical implementation. The first contribution of this 
paper in this Paper  is a new image representation called an integral image that allows for very fast feature 

evaluation. Motivated in part by the work of Papageorgiou et al. our detection system does not work directly 
with image intensities. 
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               Fig 1.1 Ref: https://www.superdatascience.com/ 

Then further proposed adversarial nets framework, the generative model is pitted against an adversary: a 
discriminative model that learns to determine whether a sample is from the model distribution or the data 
distribution. 

 

 

 

 

 

 

 

 

 

 

 

Fig: 1.2 Ref: https://www.arya.org/archievs 

At last we introduce SSD, a single-shot detector for multiple categories that is faster than the previous state-
of-the-art for single shot detectors (YOLO), and significantly more accurate, in fact as accurate as slower 

techniques that perform explicit region proposals and pooling (including Faster R-CNN).  
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 III. Implementing Object Detection algorithm 

First of all, we have worked on viola jones Research paper it has several features discussed below: 

 

i) Basically, it has 2 phases named training and detection. First, we train algorithm using face and 
Non face images after that we perform detection.  

 

 

 

 

 

 

 

 

 

Fig 2.1 Ref: https://www.superdatascience.com/ 

ii) For training we shrink image into 24 X 24 pixels and then apply Haar Features on it.  

 

 

 

 

 

 

 

 

Fig 2.2Ref: https://www.supeerdatascience.com/ 

 

 

 

Haar Features:These are Haar wavelets based on Fourier transformation. These are of many 

types some of them is listed below, shown in figure. 

 

 

 

 

 

 

                                        Fig 2.3 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones. 
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These features are applied on human face at several area to detect parts of face. 

As shown in figure. 

 

 

 

 

 

 

 

Fig 2.4 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones 

Our object detection procedure classifies images based on the value of simple features. There are many 

motivations for using features rather than the pixels directly. The most common reason is that features can 

act to encode ad-hoc domain knowledge that is difficult to learn using a finite quantity of training 

data.Rectangle features can be computed very rapidly using an intermediate representation for the image 

which we call the integral image. 

 

 

 

 

 

 

 

Fig 2.5 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones 

 

iii) After Integral image process we perform learning of algorithm  

Given a feature set and a training set of positive and negative images, any number of machine 

learning approaches could be used to learn a classification function. In our system a variant of 

AdaBoost is used both to select a small set of features and train the classifier. In its original 

form, the AdaBoost learning algorithm is used to boost the classification performance of a 

simple (sometimes called weak) learning algorithm.Recall that there are over 180,000 rectangle 

features associated with each image sub-window, a number far larger than the number of 

pixels.Even though each feature can be computed very efficiently, computing the complete set is 

prohibitively expensive.Many general feature selection procedures have been proposed. Ourfinal 

application demanded a very aggressive approach which would discard the vast majority of 

features. 

Learning Result: 

Initial experiments demonstrated that a frontal face classifier constructed from 200 features 
yields a detection rate of 95% with a false positive rate of 1 in 14084. These results are 
compelling, but not sufficient for many real-world tasks. 

In terms of computation, this classifier is probably faster than any other published system, 
requiring 0.7 seconds to scan a 384 by 288-pixel image. 
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iv) After Learning we perform cascading on images.  

This section describes an algorithm for constructing a cascade of classifiers which achieves 
increased detection performance while radically reducing computation time 

 

 

 

 

 

 

 

 

 

Fig 2.6 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones 

For example, an excellent first stage classifier can be constructed from a two-feature strong 

classifier by reducing the threshold to minimize false negatives. Measured against a validation 

training set, the threshold can be adjusted to detect 100% of the faces with a false positive rate 

of 40%.The structure of the cascade reflects the fact that within any single image an 

overwhelming majority of subwindows are negative.The cascade training process involves two 

types of tradeoffs. In most cases classifiers with more features will achieve higher detection 

rates and lower false positive rates. At the same time classifiers with more features require more 

time to compute. In principle one could define an optimization framework in which: i) the 

number of classifier stages, ii) the number of features in each stage, and iii) the threshold of each 

stage, are traded off in order to minimize the expected number of evaluated features. 

Unfortunately, finding this optimum is a tremendously difficult problem.The complete face 

detection cascade has 38 stages with over 6000 features. Nevertheless, the cascade structure 

results in fast average detection times. On a difficult dataset, containing 507 faces and 75 

million sub-windows, faces are detected using an average of 10 feature evaluations per 

subwindow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.7 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones 
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v) Results:  

A 38-layer cascaded classifier was trained to detect frontal upright faces. To train the detector, a 
set of face and nonface training images were used. The face training set consisted of 4916 hand 
labeled faces scaled and aligned to a base resolution of 24 by 24 pixels.The speed of the 
cascaded detector is directly related to the number of features evaluated per scanned sub-
window. 

 

 

 

 

 

 

Fig 2.8 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones 

 

So, we can see that how Viola and jones implemented Object detection feature.Its practical implementation 

is shown in next section.The next paper we studied and implemented was based on SSD: Single Shot 

MultiBox Detector was published by Wei Liu et al.They presented a method for detecting objects in images 

using a single deep neural network. 

Their approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over 

different aspect ratios and scales per feature map location. SSD is simple relative to methods that require 
object proposals because it completely eliminates proposal generation and subsequent pixel or feature 
resampling stages and encapsulates all computation in a single network. 

This Paper  presents the first deep network based object detector that does not resample pixels or features for 

bounding box hypotheses and is as accurate as approaches that do. The fundamental improvement in speed 
comes from eliminating bounding box proposals and the subsequent pixel or feature resampling stage.The 

whole procedure of implementation of SSD is discussed below: 

 

 

 

 

 

 

 

 

 

Fig 2.9 Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al 

i) First of all, we selected Model for implementation.  

The SSD approach is based on a feed-forward convolutional network that produces a fixed-size 
collection of bounding boxes and scores for the presence of object class instances in those 
boxes, followed by a non-maximum suppression step to produce the final detectionWe add 
convolutional feature layers to the end of the truncated base network. These layers decrease in 
size progressively and allow predictions of detections at multiple scales.Each added feature 
layer can produce a fixed set of detection predictions using set of convolution filters. As shown 
in figure 

 
 
 
 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                           www.jetir.org  (ISSN-2349-5162) 

JETIR1905165 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 439 
 

 

 

 

 

 

 

 

 

 

Fig Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al 

 

                ii)After this we try to train the model 

The key difference between training SSD and training a typical detector that uses region 

proposal is that ground truth information needs to be assigned to specific outputs in the fixed set 

of detector outputs.During training we need to determine which default boxes correspond to a 

ground truth detection and train the network accordingly. For each ground truth box we are 

selecting from default boxes that vary over location, aspect ratio, and scale. We begin by 

matching each ground truth box to the default box with the best Jaccard overlap.Training 

objective The SSD training objective is derived from the MultiBox objective but is extended to 

handle multiple object categories. During training, the scale of the default boxes for each feature 

map is computed as: 

 

 

where smin is 0.2 and smax is 0.9, meaning the lowest layer has a scale of 0.2 and the highest 
layer has a scale of 0.9, and all layers in between are regularly spaced.During training we apply 
multiple boxes to detect the position of the object, as shown in diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.10 Ref: https://www.superdatascience.com/ 

 

 

              iii)We tried to implement it on 2 datasets VOC2007 and VOC2012 and found results.  
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Here we mainly worked on 20 different objects using above mentioned datasets. 

PASCAL VOC2007: on this dataset we tried to visualize the result generated as shown in figure 
below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.11 Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al 

 

       iv) Finally, we found that Multiple output layers at different resolutions is better. A major  
contribution of SSD is using default boxes of different scales on different output layers 

           PASCALVOC2012: We use the same settings as those used for our basic VOC2007 experiments 
above except that we use VOC2012 trainval and in VOC2007 we used train and test. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.12 Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al Above figure shows the prediction of all layers. 
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At last we applied GENERATIVE ADVERSARIAL NETWORK in our Paper  for generating some random 
images. 

Although there are various applications of GANs, some of them are listed below: 

i) Generating images 

ii) Image modifications 

iii) Super resolution 

iv) Assisting artist 

v) Photo Realistic images 

vi) Speech generation 

vii) Face aging  

We worked on a new framework for estimating generative models via an adversarial process, in which we 

simultaneously train two models: a generative model G that captures the data distribution, and a 
discriminative model D that estimates the probability that a sample came from the training data rather than 

G. The training procedure for G is to maximize the probability of D making a mistake. This framework 
corresponds to a minimax two-player game. 

 

 

 

 

 

 

Fig 2.13 Ref: https://www.superdatscience.com/ 

 

 

As shown in image there are 2 subparts of GAN 

 

i) Generator 

ii) Discriminator 

This framework can yield specific training algorithms for many kinds of model and optimization algorithm. 
In this Paper , we explore the special case when the generative model generates samples by passing random 
noise through a multilayer perceptron, and the discriminative model is also a multilayer perceptron. 

Experiment: We trained adversarial nets on a range of datasets including CIFAR-10. We estimate 
probability of the test set data under pg by fitting a Gaussian Parzen window to the samples generated with 
G and reporting the log-likelihood under this distribution.Output after training the model is shown below 

 

 

 

 

 

 

Fig 2.14 Ref: Generative Adversarial Nets paper by Ian G Goodfellow 

General steps performed in implementation of this framework is mentioned below: 
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i) We first try to train the discriminator on real images.  

ii) Generator try to generate random images in parallel while training the discriminator.  

 

 

 

 

 

 

 

 

 

 

 

Fig 2.15 Ref: https://www.superdatascience.com/ 

As shown in figure discriminator is being trained as well as generator is generating images. 

 

iii) Discriminator is trained on fake images too so that it could be easy for it to recognize fake as 
well as real images.  

iv) If the images generated by generator will not match the threshold value the backpropagation is 
performed by Discriminator.  

 

 

 

 

 

 

 

 

 

 

 

Fig 2.16 Ref: https://www.superdatascience.com/ 

This procedure is continued till we don’t get the desired output. 

Result: We have applied it on CIFAR-10 dataset to generate some random images. We have executed it till 
25 epochs to get better result. 
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After 1st epoch the result was 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.18(applied on anaconda spyder 3.3.3 using pytorch library) 

 

After 25th epoch result was 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.19(applied on anaconda spyder 3.3.3 using pytorch library) 
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 IV. Design 

 

4.1 Technology Selection 

We basically worked on data science technology in which we have downloaded datasets from various sites 
and various types like CIFAR10, VOC2007, VOC2012. 

We implemented algorithm on these datasets for training them and further tested them by real time data.All 
the tests are performed on spyder IDE which supports python. We have used python3.5 and python 3.6 for 
different purposes.Most of the part of this Paper  is based on mathematics implementation mainly on 
probability distribution. So, one should have at least knowledge of basic probability and trigonometry to 
implement this Paper  model.For implementing neural network, one should have knowledge of trigonometric 
functions like Hyperbolic Tan, Sigmoid, SoftMax.One should have at least knowledge of perceptron or 
working of biological neural network and its structure. Because the technology that we have selected is 
based on working of neural network. 

4.2 Datasets Design 

In this Paper , we have used image datasets to feed neural networks. For a single model approx. 10000 
image datasets are needed to implement. We have mainly used three datasets: 

 

i) CIFAR-10 

ii) PASCAL VOC2007 

iii) PASCAL VOC2012 

 
CIFAR10 has basically 5 batch files which include approx. 10000 images. We have used this to feed our 
GAN for generating random images after train of 25 epochs. 

One can download it from 

https://www.kaggle.com/c/cifar-10 

PASCAL VOC2007 and PASCAL VOC2012 datasets used for implementing SSD network.We have 
separately implemented both datasets to train our model on 20 type of objectsOne can download VOC 
dataset it from https://github.com/DrSleep/tensorflow-deeplab-resnet/issues/128 

 

5. Implementation and Testing 

 

5.1 Subsystem and their dependancies 

We have implemented all three frameworks on anaconda framework using python 3.5 and find out the 

output results which we are including here.  

Source Code for viola Jones Algorithm for face detection: 

1. -*- coding: utf-8 -*- 
"""Created on Thu Mar 28 01:50:45 2019 

@author: Ravindra Yadav 

""" 

import cv2 

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') 

eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') 

smile_cascade = cv2.CascadeClassifier('haarcascade_smile.xml') 

http://www.jetir.org/
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#define function that will detect 

def detect(gray, frame): 

faces = face_cascade.detectMultiScale(gray, 1.3, 5) 

for(x, y, w, h) in faces: 

cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) 

roi_gray = gray[y:y+h, x:x+w] 

roi_color = frame[y:y+h, x:x+w] 

 

eyes = eye_cascade.detectMultiScale(roi_gray, 1.1, 22) 

for(ex, ey, ew, eh) in eyes: 

cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) smiles = 

smile_cascade.detectMultiScale(roi_gray, 1.7, 22) for(sx, sy, sw, sh) in smiles: 

cv2.rectangle(roi_color, (sx, sy), (sx+sw, sy+sh), (0, 0, 255), 2) return frame 

#Doing face detection using webcam 

video_capture = cv2.VideoCapture(0) 

while True: 

_, frame = video_capture.read() 

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

canvas = detect(gray, frame) 

cv2.imshow('Video', canvas) 

if cv2.waitKey(1) & 0xFF == ord('q'): 

break 

video_capture.release() 

cv2.destroyAllWindows() 

Source code for SSD implementation: 

2. , epoch), normalize = True) Object Detection 

3. Importing the libraries import torch 
 

from torch.autograd import Variable import cv2 

from data import BaseTransform, VOC_CLASSES as labelmap from ssd import build_ssd 

import imageio 

Defining a function that will do the detections 
 
def detect(frame, net, transform): 
 
height, width = frame.shape[:2] 
 
frame_t = transform(frame)[0] 
 
x = torch.from_numpy(frame_t).permute(2, 0, 1) 
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x = Variable(x.unsqueeze(0)) 
 
y = net(x) 
 
detections = y.data 
 
scale = torch.Tensor([width, height, width, height]) 

 
ii) detections = [batch, number of classes, number of occurence, (score, x0, Y0, x1, y1)] 
 
for i in range(detections.size(1)): 
 
j = 0 
 
while detections[0, i, j, 0] >= 0.2: 
 
pt = (detections[0, i, j, 1:] * scale).numpy() 

 
 
cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), (255, 0, 0), 2) 

 
cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), cv2.FONT_HERSHEY_SIMPLEX, 2, 
(255, 255, 255), 2, cv2.LINE_AA) 
 
j += 1 
 
return frame 

 

iii) Creating the SSD neural network net = build_ssd('test') 
 
net.load_state_dict(torch.load('ssd300_mAP_77.43_v2.pth', map_location = lambda storage, loc: 
storage)) 

 

# Creating the transformation 
 
transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0)) 
 

 

v) Doing some Object Detection on a video reader = imageio.get_reader('boatrace.mp4') fps 

= reader.get_meta_data()['fps'] 
 
writer = imageio.get_writer('outputrace.mp4', fps = fps) for i, frame in enumerate(reader): 
 
frame = detect(frame, net.eval(), transform) writer.append_data(frame) 
 
print(i) 
 
writer.close() 

 

Source code for GANs implementation: 
 

vi) Deep Convolutional GANs 

vii)  

viii) Importing the libraries 
 
from __future__ import print_function 
 
import torch 
 
import torch.nn as nn 
 
import torch.nn.parallel 
 
import torch.optim as optim 
 
import torch.utils.data 
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import torchvision.datasets as dset 

 
import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd 

import Variable 

# Setting some hyperparameters 
 
batchSize = 64 # We set the size of the batch. 
 
imageSize = 64 # We set the size of the generated images (64x64). 

 

# Creating the transformations 

 
transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor(), 

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) # We create a list of transformations 

(scaling, tensor conversion, normalization) to apply to the input images. 

# Loading the dataset 
 
dataset = dset.CIFAR10(root = './data', download = True, transform = transform) # We download 
the training set in the ./data folder and we apply the previous transformations on each image. 

 
dataloader = torch.utils.data.DataLoader(dataset, batch_size = batchSize, shuffle = True, 
num_workers = 2) # We use dataLoader to get the images of the training set batch by batch. 
 
 

 

ii) Defining the weights_init function that takes as input a neural network m and that will 
initialize all its weights. 
 
def weights_init(m): 
 
classname = m.__class__.__name__ 
 
if classname.find('Conv') != -1: 
 
m.weight.data.normal_(0.0, 0.02) 
 
elif classname.find('BatchNorm') != -1: 
 
m.weight.data.normal_(1.0, 0.02) 
 
m.bias.data.fill_(0) 

 

 

 
ii) Defining the generator 

 

class G(nn.Module): 
 
 

 

def __init__(self): 
 
super(G, self).__init__() 
 
self.main = nn.Sequential( 
 
nn.ConvTranspose2d(100, 512, 4, 1, 0, bias = False), 
 
nn.BatchNorm2d(512), 
 
nn.ReLU(True), 
 
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias = False), 

nn.BatchNorm2d(256), 
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nn.ReLU(True), 
 
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias = False), 
 
nn.BatchNorm2d(128), 
 
nn.ReLU(True), 
 
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias = False), 
 
nn.BatchNorm2d(64), 
 
nn.ReLU(True), 

 
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias = False), nn.Tanh() 
 
) 

 

def forward(self, input): 
 
output = self.main(input) 
 
return output 
 
 

 
iv) Creating the generator netG = G() netG.apply(weights_init) 

 

v) Defining the discriminator 
 

 

class D(nn.Module): 
 

 

def __init__(self): 
 
super(D, self).__init__()  
self.main = nn.Sequential( nn.Conv2d(3, 64, 4, 2, 1, bias = False), nn.LeakyReLU(0.2, inplace = 

True), nn.Conv2d(64, 128, 4, 2, 1, bias = False), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, 

inplace = True), nn.Conv2d(128, 256, 4, 2, 1, bias = False), nn.BatchNorm2d(256), 

nn.LeakyReLU(0.2, inplace = True), nn.Conv2d(256, 512, 4, 2, 1, bias = False), 

nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace = True), nn.Conv2d(512, 1, 4, 1, 0, bias = 

False), nn.Sigmoid() 
 
) 

 

def forward(self, input): 
 
output = self.main(input) 
 
return output.view(-1) 

 
v) Creating the discriminator netD = D() netD.apply(weights_init) 

 

vi) Training the DCGANs 

criterion = nn.BCELoss() 
 
optimizerD = optim.Adam(netD.parameters(), lr = 0.0002, betas = (0.5, 0.999)) 
 
optimizerG = optim.Adam(netG.parameters(), lr = 0.0002, betas = (0.5, 0.999)) 
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for epoch in range(25): 

 

for i, data in enumerate(dataloader, 0): 
 

 
vi) 1st Step: Updating the weights of the neural network of the discriminator 
 

 

netD.zero_grad() 

 

vii) Training the discriminator with a real image of the dataset real, _ = data 
 
input = Variable(real) 

 
target = Variable(torch.ones(input.size()[0])) output = netD(input) 
 
errD_real = criterion(output, target) 

viii) Training the discriminator with a fake image generated by the generator noise = 

Variable(torch.randn(input.size()[0], 100, 1, 1)) 
 
fake = netG(noise) 

 
target = Variable(torch.zeros(input.size()[0])) output = netD(fake.detach()) 
 
errD_fake = criterion(output, target)  
viii) Backpropagating the total error errD = errD_real + errD_fake errD.backward() 

optimizerD.step() 

 

 

ix) 2nd Step: Updating the weights of the neural network of the generator 
 
netG.zero_grad() 
 
target = Variable(torch.ones(input.size()[0])) 
 
output = netD(fake) 
 
errG = criterion(output, target) 

 
 
 

errG.backward() 
 
optimizerG.step() 
 

 
iii) 3rd Step: Printing the losses and saving the real images and the generated images of the 
minibatch every 100 steps 

 

print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, 25, i, len(dataloader), 
(errD.data).item(), (errG.data).item())) 
 
if i % 100 == 0: 
 
vutils.save_image(real, '%s/real_samples.png' % "./result1", normalize =  
True) 
 
fake = netG(noise) 

 
vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./result1" 
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Implementation of viola – Jones research paper Rapid Object Detection using a Boosted Cascade of 

Simple Feature given below: 

 

i) We implemented Haar features for face, smile and eye detection, as shown in screenshot. 

 

ii) For this we have to set the environment in spyder as base environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii) We executed the code and get output which is mentioned below.  
 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2 
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Implementation of SSD: Single shot MultiBox Detector paper by Wei Liu is mentioned below: 

 

i) We implemented SSD using pytorch library and downloaded datasets for training  

ii) For this we used different environment in anaconda named virtual_environment on which have 
installed all required library for implementing SSD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Fig 4.3 Ref: spyder 3.3.3 from anaconda framework. 

iii) Output as shown in figure below: 

When we implemented using boat video, output is: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.4 
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          When we implemented using Dog video, output is: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.5 

Implementation of GENERATIVE ADVAERSARIAL NETWORK  paper by Ian 

G. Goodfellow:  

i) We have implemented it using python 3.5 in spyder on anaconda framework. 
ii) Used AMD graphics card for training neural network 

iii) Code is shown below, 
 

 

 

 

 

 

 

 

 

 

Fig 4.6 

 

 

 

 

 

 

 

 

 

 

Fig 4.7 
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iv) Output images are shown below 

 

 

 

 

 

      

 

 

 

  Fig 4.8 

Conclusion 
After implementing all three frameworks we came to conclude each of these three as: 

 

Viola Jones Algorithm: 

We have presented an approach for object detection which minimizes computation time while achieving 
high detection accuracy. The approach was used to construct a face detection system which is approximately 

15 times faster than any previous approach. But it has some demerits like it can’t work properly with video 
streaming frames. So, for this we have implemented SSD algorithm. 

 

SSD: Single shot MultiBox detection framework: 

 

A key feature of our model is the use of multi-scale convolutional bounding box outputs attached to multiple 

feature maps at the top of the network. This representation allows us to efficiently model the space of 
possible box shapes. Unlike CNN it can detect whole image in single shot. So, it saves our computation 

time. 

But it hasn’t any feature of generating a random image. So for this feature we used GANs. 

 

Generative Adversarial Network 

Although GAN has several advantages but it is the best network for generating random images in less 

amount of time. It can also be used for making AI chatbots and increasing or decreasing resolution of an 

image with most efficient way. 
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