© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

A Novel Approach to Detect Objects in Videos
Using Machine Learning.

Ravindra yadav Vikas Vankhede Jay Singh
Assistant professor Assistant professor Assistant professor
IT Department ,IET DAVV IT Department ,IET DAVV IT Department,IET DAVV

Abstract— This Paper basically contains applications of computer vision. In this Paper we have
implemented computer vison and its three major application. First of all we have implemented face
recognition system using Rapid object detection using Boosted Cascade of Simple Features paper published
by Paul Viola and Michael Jones. Then we further implemented SSD algorithm for object detection using
paper SSD: Single Shot MultiBox detection published by Wei Liu. At last we have implemented Generative
Adversarial Network using paper publish by lan Goodfellow. For implementing SSD we have used VOC
dataset which is mentioned in paper by Wei Liu. SSD is much better than other normal CNN technique
having 76.9% accuracy on 512 x 512 model.

Keywords— CNN, SSD, Generative Adversarial Network, Object detection.
I. INTRODUCTION

The main purpose of this Paper was to get knowledge about applications of computer vision which can be
beneficial in real life for example self driving cars are currently implementing computer vision, security
systems are implementing computer vision, etc.

Issue involved in this area is how to recognize image correctly so that it could be implemented in easy way.
For this we have used several algorithms for getting better efficiency for example SSD algorithm for object
detection. Initially it was very difficult to apply such an algorithm due to lack of knowledge in people also
older algorithms like viola jones take more time in execution having less efficiency. But SSD and GAN has
done much better work as compared to ancient algorithms The main problem on which we are working on is
object detection and image generation using features of computer vision. It is a critical task to train a
computer model to recognize face, objects and generate images according to that. So, for this we have used
several frameworks to implement this challenging situation. It may take several hours to train our model
depending on GPU and processor used for implementation. Best GPU is Nvidia and minimum core i5
processor is needed. Although implementation is same for MAC OS, Windows, Linux.

Il. RELATED WORKS

We have applied viola Jones algorithm, Generative adversarial Networks and SSD for better result. First of
all, we have applied viola- jones research paper for practical implementation. The first contribution of this
paper in this Paper is a new image representation called an integral image that allows for very fast feature
evaluation. Motivated in part by the work of Papageorgiou et al. our detection system does not work directly
with image intensities.

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 433

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

0.166 0568

Fig 1.1 Ref: https://www.superdatascience.com/

Then further proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the data
distribution.

Generator Discriminator

Generated Real

Example

Rea
Example

Noise
Source

Fake

FG Fp

Fig: 1.2 Ref: https://www.arya.org/archievs

At last we introduce SSD, a single-shot detector for multiple categories that is faster than the previous state-
of-the-art for single shot detectors (YOLO), and significantly more accurate, in fact as accurate as slower
techniques that perform explicit region proposals and pooling (including Faster R-CNN).

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 434

http://www.jetir.org/
https://www.arya.org/archievs

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

111. Implementing Object Detection algorithm

First of all, we have worked on viola jones Research paper it has several features discussed below:

i) Basically, it has 2 phases named training and detection. First, we train algorithm using face and
Non face images after that we perform detection.

Face Images Non-Face Images

Fig 2.1 Ref: https://www.superdatascience.com/

ii) For training we shrink image into 24 X 24 pixels and then apply Haar Features on it.

| -

Edge Features

|

Line Feaur=ss

-

Fouwur-Rectamnogle
Featur=s

Fig 2.2Ref: https://www.supeerdatascience.com/

Haar Features:These are Haar wavelets based on Fourier transformation. These are of many
types some of them is listed below, shown in figure.

Extra Feature Layers
. A
Bwrough CormyS_3 tayer Ctamsifior - Com: TeiaaxiClasses+41)

- ~
\\\\\\ i Sl . T ~ Ay S—
L o, ~, \\
! .
| -

B I

RS

| P
[o=
| |
- - o .
o seae ar |
Ty a3 1024 Conre: 1x121004 Sorre: 121 Come. Txlxt3S
Caowryar gt s el

- oetaf12m2 Come:

il
g
!
T
[

/Ej!

[T T T S

etors 72 pr O |

Non-Masium Suppression

s
| Dt

Fig 2.3 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones.

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 435

http://www.jetir.org/
https://www.superdatascience.com/
https://www.supeerdatascience.com/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

These features are applied on human face at several area to detect parts of face.

As shown in figure.

Our object

Fig 2.4 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones

detection procedure classifies images based on the value of simple features. There are many

motivations for using features rather than the pixels directly. The most common reason is that features can
act to encode ad-hoc domain knowledge that is difficult to learn using a finite quantity of training
data.Rectangle features can be computed very rapidly using an intermediate representation for the image
which we call the integral image.

i)

s(z,y) = s(z,y—1)+i(x,y)

ii(z,y) = idi(x—1y)+ s(x,¥y)

Fig 2.5 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones

After Integral image process we perform learning of algorithm

Given a feature set and a training set of positive and negative images, any number of machine
learning approaches could be used to learn a classification function. In our system a variant of
AdaBoost is used both to select a small set of features and train the classifier. In its original
form, the AdaBoost learning algorithm is used to boost the classification performance of a
simple (sometimes called weak) learning algorithm.Recall that there are over 180,000 rectangle
features associated with each image sub-window, a number far larger than the number of
pixels.Even though each feature can be computed very efficiently, computing the complete set is
prohibitively expensive.Many general feature selection procedures have been proposed. Ourfinal
application demanded a very aggressive approach which would discard the vast majority of
features.

Learning Result:

Initial experiments demonstrated that a frontal face classifier constructed from 200 features
yields a detection rate of 95% with a false positive rate of 1 in 14084. These results are
compelling, but not sufficient for many real-world tasks.

In terms of computation, this classifier is probably faster than any other published system,
requiring 0.7 seconds to scan a 384 by 288-pixel image.

JETIR1905165

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 436

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

iv) After Learning we perform cascading on images.

This section describes an algorithm for constructing a cascade of classifiers which achieves
increased detection performance while radically reducing computation time

T T T Furtner
- Processing
G R ——

- Reject Sub-window

Fig 2.6 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones

For example, an excellent first stage classifier can be constructed from a two-feature strong
classifier by reducing the threshold to minimize false negatives. Measured against a validation
training set, the threshold can be adjusted to detect 100% of the faces with a false positive rate
of 40%.The structure of the cascade reflects the fact that within any single image an
overwhelming majority of subwindows are negative.The cascade training process involves two
types of tradeoffs. In most cases classifiers with more features will achieve higher detection
rates and lower false positive rates. At the same time classifiers with more features require more
time to compute. In principle one could define an optimization framework in which: i) the
number of classifier stages, ii) the number of features in each stage, and iii) the threshold of each
stage, are traded off in order to minimize the expected number of evaluated features.
Unfortunately, finding this optimum is a tremendously difficult problem.The complete face
detection cascade has 38 stages with over 6000 features. Nevertheless, the cascade structure
results in fast average detection times. On a difficult dataset, containing 507 faces and 75
million sub-windows, faces are detected using an average of 10 feature evaluations per
subwindow.

—

Fig 2.7 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 437

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

V) Results:

A 38-layer cascaded classifier was trained to detect frontal upright faces. To train the detector, a
set of face and nonface training images were used. The face training set consisted of 4916 hand
labeled faces scaled and aligned to a base resolution of 24 by 24 pixels.The speed of the
cascaded detector is directly related to the number of features evaluated per scanned sub-

window.
‘-\-\-_\"'\-\.___
T False detections
—_

Dwtacior T | 10 31 i 5 78 95 157
Yiela-lones T8 1% ER 4% a1 4% | ERNEH | 92.1% R EEEES
Vicla-Jones (votng) Bl 1% | 89.7% | 92.1% | 93.1% | 931% | 932% | 931%
Rowley-Baluja-Kanade B0 | 860% | - | - - §9.2% | 501%

|_Schoriderman Fannde 1= -1 f el - - -
[_imeth- sang-Ahos - I | R | -

Fig 2.8 Ref: Rapid Object Detection using a Boosted Cascade of Simple Feature paper by Paul viola and Michael Jones

So, we can see that how Viola and jones implemented Object detection feature.lts practical implementation
is shown in next section.The next paper we studied and implemented was based on SSD: Single Shot
MultiBox Detector was published by Wei Liu et al. They presented a method for detecting objects in images
using a single deep neural network.

Their approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over
different aspect ratios and scales per feature map location. SSD is simple relative to methods that require
object proposals because it completely eliminates proposal generation and subsequent pixel or feature
resampling stages and encapsulates all computation in a single network.

This Paper presents the first deep network based object detector that does not resample pixels or features for
bounding box hypotheses and is as accurate as approaches that do. The fundamental improvement in speed
comes from eliminating bounding box proposals and the subsequent pixel or feature resampling stage.The
whole procedure of implementation of SSD is discussed below:

[o=
Rl
RO T P [DI
=% 1 ES-=]] R
~1<-—<H‘ | lI | 4 RS
=y ! 'l :) AT
"||_,i|, | |: - - 8,
1 e O G B (TSI ISP] TP
sl ety U=2h (fo-51 ESSSRtecss 1 T
‘ :III—I:Il ——/I .
1 OO — I e [
- -l - A/
N | b B '|0C:A(t';l:.('y._ w, h)
{ conf : (('].('2."-.(‘],)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map
Fig 2.9 Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al
i) First of all, we selected Model for implementation.

The SSD approach is based on a feed-forward convolutional network that produces a fixed-size
collection of bounding boxes and scores for the presence of object class instances in those
boxes, followed by a non-maximum suppression step to produce the final detectionWe add
convolutional feature layers to the end of the truncated base network. These layers decrease in
size progressively and allow predictions of detections at multiple scales.Each added feature
layer can produce a fixed set of detection predictions using set of convolution filters. As shown
in figure

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 438

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

Extra Feature Layers
VGG-16 . A
: ; through Cigrv\S,B layor Classifier - Comv: 3xSx(dxiClasses+4)) ‘ ‘
N\) -~ -~ 1
‘=\ i N\ RN RO\ Classier - Conv: I3x{6ix{Classes 1)) 3 |&
Ty \ NN \ o
\._‘ Y \ \ \ X o
20 | ™ rroy \\ \\ *1 o
3 : " " " N\ [\ Ak l_>,c3 74.3mAP
B | ! L \ \,\ ™) | g 59FPS
Gorwt 3 | ot Com ! s Come: Ju3a{dx{Classes+4)) | |
- : | won ocn now* ¥ ~ x(dxiChsses+d)) | 8 E
\ \ Cintt 2 - ’\\ < of § | é
\\ \ \\” \\u] \.\»: “\5 ol Cow11 2 8 IS
3 \ N \ 3 o - |
*\ AN N\ 22 N 124) \ a2 \‘.m \m‘i ‘Q n\ L 2
T Caev: 201004 Conv: 1x1x1024 Caorre, 121 Conv. 1x1x128 Conw 1xixi28 Conw: IxIx128

Corrv. 33251252 Conv. 3326652 Conv: 26651 Conw: 225681

Fig Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al

ii)After this we try to train the model

The key difference between training SSD and training a typical detector that uses region
proposal is that ground truth information needs to be assigned to specific outputs in the fixed set
of detector outputs.During training we need to determine which default boxes correspond to a
ground truth detection and train the network accordingly. For each ground truth box we are
selecting from default boxes that vary over location, aspect ratio, and scale. We begin by
matching each ground truth box to the default box with the best Jaccard overlap.Training
objective The SSD training objective is derived from the MultiBox objective but is extended to
handle multiple object categories. During training, the scale of the default boxes for each feature
map is computed as:

S — S
8k = Smin + —————(k—=1), ke [l,m]
m—1
where smin is 0.2 and smax is 0.9, meaning the lowest layer has a scale of 0.2 and the highest
layer has a scale of 0.9, and all layers in between are regularly spaced.During training we apply
multiple boxes to detect the position of the object, as shown in diagram.

Fig 2.10 Ref: https://www.superdatascience.com/

iii)We tried to implement it on 2 datasets VOC2007 and VOC2012 and found results.

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 439

http://www.jetir.org/
https://www.superdatascience.com/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

Here we mainly worked on 20 different objects using above mentioned datasets.

PASCAL VOC2007: on this dataset we tried to visualize the result generated as shown in figure
below.

animals
100
80
g a 2
2 - 2
F— £L F=
60
$ 3 3
-]] L]
©] Y 40
g g g
c c c
Q @ w
e & & 20
g a a
0 — 0 — 0 —
0125025 05 1 2 4 8 0125025 05 1 2 4 B8 0125025 05 1 2 4 8
total detections (x 357) total detections (x 415) total detections (x 400)
animals vehicles furniture
100 100 100
80 80 80
g g &
= = =
= = =
60 60 60
g 4 g
: 0 s 0 H 0
N | | &4
-§ by %
= =
< o (4
£ 20 e 20 £ 20
g 2 a2
0 0 0
25 50 100 200 400 800 16003200 25 50 100 200 400 200 16003200 25 50 100 200 400 800 16003200
total false positves fotal talse postives total faise posaives

Fig 2.11 Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al

iv) Finally, we found that Multiple output layers at different resolutions is better. A major
contribution of SSD is using default boxes of different scales on different output layers
PASCALVOC2012: We use the same settings as those used for our basic VOC2007 experiments
above except that we use VOC2012 trainval and in VOC2007 we used train and test.

Prediction source layers from: st
use boundary boxes? |# Boxes
conv4.3 conv? convd 2 conv®. 2 convl(.2 convl] 2 Yes Mo

v v v v v v 74.3 63.4 8732
v v v v v 74.6 63.1 8764
v v v v 73.8 68.4 8942
v v v 0.7 69.2 DE64
v v 4.2 6.4 o025

v 62.4 64.0) Bobd

Table Effects of using multiple output layers.

Fig 2.12 Ref: SSD: Single Shot MultiBox Detector paper by Wei Liu et al Above figure shows the prediction of all layers.

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 440

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

At last we applied GENERATIVE ADVERSARIAL NETWORK in our Paper for generating some random
images.

Although there are various applications of GANs, some of them are listed below:

i) Generating images

i) Image modifications
iii) Super resolution

iv) Assisting artist

V) Photo Realistic images
vi) Speech generation

vii) Face aging

We worked on a new framework for estimating generative models via an adversarial process, in which we
simultaneously train two models: a generative model G that captures the data distribution, and a
discriminative model D that estimates the probability that a sample came from the training data rather than
G. The training procedure for G is to maximize the probability of D making a mistake. This framework
corresponds to a minimax two-player game.

o0

P |
R
-
|
|

%

U
o2

o

R
BN

Fig 2.13 Ref: https://www.superdatscience.com/

As shown in image there are 2 subparts of GAN

i) Generator
ii) Discriminator
This framework can yield specific training algorithms for many kinds of model and optimization algorithm.

In this Paper , we explore the special case when the generative model generates samples by passing random
noise through a multilayer perceptron, and the discriminative model is also a multilayer perceptron.

Experiment: We trained adversarial nets on a range of datasets including CIFAR-10. We estimate
probability of the test set data under pg by fitting a Gaussian Parzen window to the samples generated with
G and reporting the log-likelihood under this distribution.Output after training the model is shown below

Fig 2.14 Ref: Generative Adversarial Nets paper by lan G Goodfellow

General steps performed in implementation of this framework is mentioned below:

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 441

http://www.jetir.org/
https://www.superdatscience.com/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

i) We first try to train the discriminator on real images.

i) Generator try to generate random images in parallel while training the discriminator.

Fig 2.15 Ref: https://www.superdatascience.com/

As shown in figure discriminator is being trained as well as generator is generating images.

iii) Discriminator is trained on fake images too so that it could be easy for it to recognize fake as
well as real images.

iv) If the images generated by generator will not match the threshold value the backpropagation is
performed by Discriminator.

Fig 2.16 Ref: https://www.superdatascience.com/

This procedure is continued till we don’t get the desired output.

Result: We have applied it on CIFAR-10 dataset to generate some random images. We have executed it till
25 epochs to get better result.

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 442

http://www.jetir.org/
https://www.superdatascience.com/
https://www.superdatascience.com/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

After 1% epoch the result was

Fig 2.18(applied on anaconda spyder 3.3.3 using pytorch library)

After 25" epoch result was

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 443

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

1V. Design

4.1 Technology Selection

We basically worked on data science technology in which we have downloaded datasets from various sites
and various types like CIFAR10, VOC2007, VOC2012.

We implemented algorithm on these datasets for training them and further tested them by real time data. All
the tests are performed on spyder IDE which supports python. We have used python3.5 and python 3.6 for
different purposes.Most of the part of this Paper is based on mathematics implementation mainly on
probability distribution. So, one should have at least knowledge of basic probability and trigonometry to
implement this Paper model.For implementing neural network, one should have knowledge of trigonometric
functions like Hyperbolic Tan, Sigmoid, SoftMax.One should have at least knowledge of perceptron or
working of biological neural network and its structure. Because the technology that we have selected is
based on working of neural network.

4.2 Datasets Design
In this Paper , we have used image datasets to feed neural networks. For a single model approx. 10000
image datasets are needed to implement. We have mainly used three datasets:

)} CIFAR-10
i) PASCAL VOC2007
iii) PASCAL VOC2012

CIFAR10 has basically 5 batch files which include approx. 10000 images. We have used this to feed our
GAN for generating random images after train of 25 epochs.

One can download it from

https://www.kaggle.com/c/cifar-10

PASCAL VOC2007 and PASCAL VOC2012 datasets used for implementing SSD network.We have
separately implemented both datasets to train our model on 20 type of objectsOne can download VOC
dataset it from https://github.com/DrSleep/tensorflow-deeplab-resnet/issues/128

5. Implementation and Testing

5.1 Subsystem and their dependancies

We have implemented all three frameworks on anaconda framework using python 3.5 and find out the
output results which we are including here.

Source Code for viola Jones Algorithm for face detection:

1.-*- coding: utf-8 -*-
"""Created on Thu Mar 28 01:50:45 2019

@author: Ravindra Yadav

import cv2

face_cascade = cv2.CascadeClassifier(‘haarcascade_frontalface default.xml’)
eye_cascade = cv2.CascadeClassifier(‘haarcascade_eye.xml'")

smile_cascade = cv2.CascadeClassifier(‘haarcascade_smile.xml")

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 444

http://www.jetir.org/
https://www.kaggle.com/c/cifar-10
https://github.com/DrSleep/tensorflow-deeplab-resnet/issues/128

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

#define function that will detect

def detect(gray, frame):

faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for(x, y, w, h) in faces:

cv2.rectangle(frame, (X, y), (x+w, y+h), (255, 0, 0), 2)
roi_gray = gray[y:y+h, x:x+w]

roi_color = frame[y:y+h, x:x+w]

eyes = eye_cascade.detectMultiScale(roi_gray, 1.1, 22)

for(ex, ey, ew, eh) in eyes:

cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) smiles =
smile_cascade.detectMultiScale(roi_gray, 1.7, 22) for(sx, sy, sw, sh) in smiles:

cv2.rectangle(roi_color, (sx, sy), (sx+sw, sy+sh), (0, 0, 255), 2) return frame

#Doing face detection using webcam
video_capture = cv2.VideoCapture(0)
while True:

_, frame = video_capture.read()

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
canvas = detect(gray, frame)
cv2.imshow('Video', canvas)

if cv2.waitKey(1) & OxFF == ord('q"):
break

video_capture.release()
cv2.destroyAllWindows()

Source code for SSD implementation:

2., epoch), normalize = True) Object Detection
3. Importing the libraries import torch

from torch.autograd import Variable import cv2

from data import BaseTransform, VOC_CLASSES as labelmap from ssd import build_ssd
import imageio

Defining a function that will do the detections

def detect(frame, net, transform):
height, width = frame.shape[:2]
frame_t = transform(frame)[0]

x = torch.from_numpy(frame_t).permute(2, 0, 1)

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 445

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

x = Variable(x.unsqueeze(0))

y = net(x)

detections = y.data

scale = torch.Tensor([width, height, width, height])

ii) detections = [batch, number of classes, number of occurence, (score, X0, YO0, x1, y1)]
for i in range(detections.size(1)):

j=0

while detections]0, i, j, 0] >=0.2:

pt = (detections|0, i, j, 1:] * scale).numpy()

cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), (255, O, 0), 2)

cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), cv2.FONT_HERSHEY_SIMPLEX, 2,
(255, 255, 255), 2, cv2.LINE_AA)

j+=1
return frame
iii) Creating the SSD neural network net = build_ssd('test’)

net.load_state_dict(torch.load('ssd300_mAP_77.43_v2.pth’', map_location = lambda storage, loc:
storage))

Creating the transformation

transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0))

V) Doing some Object Detection on a video reader = imageio.get_reader('boatrace.mp4') fps

= reader.get_meta_data()['fps’]

writer = imageio.get_writer(‘outputrace.mp4’, fps = fps) for i, frame in enumerate(reader):
frame = detect(frame, net.eval(), transform) writer.append_data(frame)

print(i)

writer.close()

Source code for GANs implementation:

vi) Deep Convolutional GANs
vii)

viii) Importing the libraries

from __future__ import print_function
import torch

import torch.nn as nn

import torch.nn.parallel

import torch.optim as optim

import torch.utils.data

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 446

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

import torchvision.datasets as dset

import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd
import Variable
Setting some hyperparameters

batchSize = 64 # We set the size of the batch.

imageSize = 64 # We set the size of the generated images (64x64).

Creating the transformations

transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) # We create a list of transformations
(scaling, tensor conversion, normalization) to apply to the input images.

Loading the dataset

dataset = dset. CIFAR10(root = "./data’, download = True, transform = transform) # We download
the training set in the ./data folder and we apply the previous transformations on each image.

dataloader = torch.utils.data.Datal oader(dataset, batch_size = batchSize, shuffle = True,
num_workers = 2) # We use dataloader to get the images of the training set batch by batch.

i) Defining the weights_init function that takes as input a neural network m and that will
initialize all its weights.

def weights_init(m):

classname =m.__class__._ _name__

if classname.find('Conv') !=-1:
m.weight.data.normal_(0.0, 0.02)

elif classname.find('BatchNorm') !=-1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)

i) Defining the generator

class G(nn.Module):

def __init__ (self):

super(G, self).__init_ ()

self.main = nn.Sequential(
nn.ConvTranspose2d(100, 512, 4, 1, 0, bias = False),
nn.BatchNorm2d(512),

nn.ReLU(True),

nn.ConvTranspose2d(512, 256, 4, 2, 1, bias = False),
nn.BatchNorm2d(256),

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 447

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

nn.ReLU(True),

nn.ConvTranspose2d(256, 128, 4, 2, 1, bias = False),
nn.BatchNorm2d(128),

nn.ReLU(True),

nn.ConvTranspose2d(128, 64, 4, 2, 1, bias = False),
nn.BatchNorm2d(64),

nn.ReLU(True),

nn.ConvTranspose2d(64, 3, 4, 2, 1, bias = False), nn.Tanh()
)

def forward(self, input):
output = self.main(input)

return output

iv) Creating the generator netG = G() netG.apply(weights_init)

V) Defining the discriminator

class D(nn.Module):

def __init__ (self):

super(D, self).__init_ ()
self.main = nn.Sequential(nn.Conv2d(3, 64, 4, 2, 1, bias = False), nn.LeakyReLU(0.2, inplace =

True), nn.Conv2d(64, 128, 4, 2, 1, bias = False), nn.BatchNorm2d(128), nn.LeakyReL U(0.2,
inplace = True), nn.Conv2d(128, 256, 4, 2, 1, bias = False), nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace = True), nn.Conv2d(256, 512, 4, 2, 1, bias = False),
nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace = True), nn.Conv2d(512, 1, 4, 1, 0, bias =
False), nn.Sigmoid()

)

def forward(self, input):
output = self.main(input)

return output.view(-1)
V) Creating the discriminator netD = D() netD.apply(weights_init)

vi) Training the DCGANS
criterion = nn.BCELo0ss()
optimizerD = optim.Adam(netD.parameters(), Ir = 0.0002, betas = (0.5, 0.999))

optimizerG = optim.Adam(netG.parameters(), Ir = 0.0002, betas = (0.5, 0.999))

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 448

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

for epoch in range(25):

for i, data in enumerate(dataloader, 0):

vi) 1st Step: Updating the weights of the neural network of the discriminator

netD.zero_grad()

vii) Training the discriminator with a real image of the dataset real, _ = data
input = Variable(real)
target = Variable(torch.ones(input.size()[0])) output = netD(input)

errD_real = criterion(output, target)
viii) Training the discriminator with a fake image generated by the generator noise =

Variable(torch.randn(input.size()[0], 100, 1, 1))

fake = netG(noise)

target = Variable(torch.zeros(input.size()[0])) output = netD(fake.detach())

errD_fake = criterion(output, target)
viii) Backpropagating the total error errD = errD_real + errD_fake errD.backward()

optimizerD.step()

iX) 2nd Step: Updating the weights of the neural network of the generator
netG.zero_grad()

target = Variable(torch.ones(input.size()[0]))

output = netD(fake)

errG = criterion(output, target)

errG.backward()

optimizerG.step()

iii) 3rd Step: Printing the losses and saving the real images and the generated images of the
minibatch every 100 steps

print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, 25, i, len(dataloader),
(errD.data).item(), (errG.data).item()))

ifi % 100 == 0:

vutils.save_image(real, '%s/real_samples.png' % "./resultl”, normalize =
True)

fake = netG(noise)

vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./result1"

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 449

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

Implementation of viola — Jones research paper Rapid Object Detection using a Boosted Cascade of
Simple Feature given below:

i) We implemented Haar features for face, smile and eye detection, as shown in screenshot.

i) For this we have to set the environment in spyder as base environment.

@ Spyder (Python 3.6)

File Edit Search Source Run Debug Consoles Projects Tools View Help
Oes Eo0 pOBPEDGC ML= R R & P € > [=Detecton vith OpenCV\009 Computer-Vision-A-Z\Computer Vison A-Z\Mode 1 -Face Recogniton | Bl A
Editor - E:\study materials\machine learning\[FreeTutorial.Us] Udemy - computer-vision-a-2\03 Module 1 - Face Detection with OpenCV\003 Computer-Vision-A-Z\Computer .. & X File explorer 8 x

(b smile.py E3 & © (+] &

object_detection_nocomment.py obj_Det.py dcgan_nocomment.py face_recognition_nocomment.py fr.py

Name Size Type Date
[DS store 6KB DS StoreFile 26-09-
3 fac_recpy 1KB py File 27-03-
[face_recognition_commented.py 1KB py File 26-09-
[2 face_recognition_nocomment.py 1KB py File 26-09-
B frpy 1KB py File 14-03-
face_ de = ¢ f) [haarcascade_eyexml 333KB xml File 15-09-
eyef”“de J [haarcascade frontalface_defaultxml 908 KB xml File 15-09-
e_cascade
[3 haarcascade_smilexml 184KB xeml File 10-10-
3 smilepy 1KB py File 28-03-
detect(gray, frame):
faces = face_cascade.detectMultiScale(gray, . ,)
(% y» w, h) in faces < I - >
cv2.rectangle(frame, (x, y), (xtw, y+h), (* , 5),) Help Variable explorer File explorer
y+h, xixtw] IPython console 8 x
ade. detectMultiScale(roi_gray, ., =) B coeinD 0

(ex, ey, ew, eh) in ey

cv2.rectangle(roi_color, ey), (extew, ey+eh), (', 5 8), 2)
smil nile_ de.detectMultiScale(roi_gray, . ,

(sx, sy, sw, sh) in smil

cv2.rectangle(roi_color, (sx, sy), (s: sy+sh), (9,0, 255), 2)

frame

video_capture = cv2.VideoCapture()

video_capture.read(

cvtColor(frame, cv2.COLOR_BGR2GRAY)

video_capture = cv2.VideoCapture() detect(gray, frame)
video_capture.read()
.cvtColor(frame, cv2.COLOR_BGR2GRAY)

detect(gray, frame)

video_capture.release()
estroyAllWindows ()

video_capture.release() 3
cv2.destroyAllWindows () Byihon console; |/ HEBFY18

Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 14 Column: 25 Memory: 86 %

] 01:33
H O Type here to search fg} @ L A B L@ D) NG 09.04.2010 =3

We executed the code and get output which is mentioned below.

-_—

L]

D = E0 p @ @ Hp | 7 Video] u] X fision-A-Z\Computer Vision A-ZWModule 1 -Face Recogniton | By AV
Editor - E:\study g\[F .Us] Udem \ 8 X
C3{ object detection_nocomment.py obj_Det.py [b Sy . -3

- coding: utf-8 -*- A . % -y R Size Type Date
"

Created on Thu lar 28 61:50:45 2019 B¥]w ¥ GXEDS dambly 00,
—~ = 1KB pyFile 27-03-

fauthor:_ Rohit Raj - : - gnition_commented.py 1KB pyFile 26-09-
] gnition_nocomment.py 1KB py File 26-09-

fwporticiz R 1KB py File 14-03-
face_cascade = cv2.CascadeClassifier(‘haar 0 | - 333K8 xmi File 15-00-
Y cascade & Cv2.coscadetaeatfionl thaurd gl | de_frontalface_defautxml 908 KB xemi File 15-09-

smile cascade = cv2.CascadeClassifier('haar t
= de_smilexml 184 KB xml File 10-10-,

define function that will detect t t W == 8 1KB py File 28-03-
def detect(gray, frame): ‘.. § .
faces = face_cascade.detectMultiScale \
for(x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (xtw,
roi_gray = gray[y:y+h, x:x+w] |
roi_color = frame[y:y+h, x:xtw] . 8 x
\ =] | &)

| explorer File explorer

g

eyes = eye_cascade.detectMultiScal
for(ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex,
smiles = smile_cascade.detectMulti! % =
for(sx, sy, sw, sh) in smiles: N
cv2.rectangle(roi color, (sx, s
return frame

Doing face detection using webcam
video_capture = cv2.VideoCapture (0 ame o_cap ad
hile True: gra e OLOR

_, frame = video_capture.read() z

gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY

canvas = detect(gray, frame)

cv2.inshow('Video’, canvas)

if cv2.waitkey(1) & OxFE_ == ord(‘g"):

break ap

ideo_capture.release() | v

) v2. destroyalliindows Bl ython console. Historylog

Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 38 Column: 25 Memory: 86 %
01:32

H O Type here to search 4 i = @ @ @ £ AL E) me 09-04-2019 E5

Fig 4.2

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 450

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

Implementation of SSD: Single shot MultiBox Detector paper by Wei Liu is mentioned below:

i) We implemented SSD using pytorch library and downloaded datasets for training

i) For this we used different environment in anaconda named virtual_environment on which have

installed all required library for implementing SSD.

& Spyder (Python 3.5) s =] X

File Edit Search Source Run Debug Consoles Projects Tools View Help

DER“EQ PEHBEDE HEEEhB BX £F2 ¢ 9o V&
Editor -1 v\l Ue] Udemy - comput 03 Modue 1 - Face Detection \Compu A X Help 8 x

[object_detecton_nocomment.py B obj_etpy (] degan_nocomment.py (£ face_recognition_nocomment.py (] smiepy [

frpy (] |4 © &% Source Console ¥ | Object| e @
~

Here you can get help of any object
by pressing Ctrl+1 n front of i,
either on the Editor or the Console.

Help can also be shovn automatically
after writing a left parenthesis next to
an object, You can ativate this
behavior in Freferences > Help.

Neus to Spyder? Read our tutorial

Help Variable explorer File explorer
TPythen consele 8 x
[Console 14 B3 ®*

< >

IPython console History log

Permissions: RW End-of-lines: L Encoding: ASCI Line: 290 Column: 1 Memory: 84 %

EJ O oo e om o BB @ ~vowoon,l,®

Fig 4.3 Ref: spyder 3.3.3 from anaconda framework.

iii) Output as shown in figure below:
When we implemented using boat video, output is:

ious Assault Ship

Fig 4.4

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

| 451

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

When we implemented using Dog video, output is:

Fig 4.5

Implementation of GENERATIVE ADVAERSARIAL NETWORK paper by lan

G. Goodfellow:

i) We have implemented it using python 3.5 in spyder on anaconda framework.
i) Used AMD graphics card for training neural network
iii) Code is shown below,

® Spyder (Python 3.5) - & x
Fila Edit Search Source Run Dabug Conscles Projects Tool View Help
M wiEe B G| M c =g=) B B X £ @ € > (0001005 Conputer-viionAz\Compter Vison A-ZWode 2 - Object DetectioniCods for Windows | B AN
[1 Udemy i- with & %/ | rhe axplorer
(1 object_detection_nocomment.py obj_Det.py degan_ n face_recognition_nocomment.py smile.py [fr.py iIFla © © 6
torehsau 7 Vartable e s R
) funny2.mpa 1.7 MB mpd File
) obj_Detpy 1K8 py File
@) object_detection_commented.py IKB py File
[object detection_nocomment.py KB py File

652 bytes py File
14MB mpa File
1.2 MB mpd Fil

= Py 7 KB
[55d300_mAP_77.43_v2.pth 100.3 MB pth File
le

Help Variable explorer Fie explorer

1ython conscle
3 Console 14 E3

IPython conmole Hiatory log

Permissions: RW _ End-of-lines: LF __ Encoding: ASCIT Line: 120 Column: 1 Memory:

~ % T e dx ENG

ﬂ ©) Toe hark to ssarch

Fig 4.6

@ Spyder (Python 3.5) - X
File Edit Search Source Run Debug Consoles Projects Tools View Help

O @ “EQ OB G M == B B X £ ® € > bencvios comutervisonAzicomputer Vison AZWodue 2 - Object Detection\Code for indows | B> 4N

& X File explorer

WFa © © 0

Us) Udemy - compu Module 1 pu

Editor - E: g\
dcgan_nocomment.py [E] face_recognition_nocomment.py smile.py. fr.py

[} object_detection_nocomment.py obj_Det.py [
apply nit) Name Size Type
B funny2.mpd 1.7 MB mpd File -
[3) obj_Det.py 1KB pyFile @
D(nn.Mo [object.detection_commentad.py 3KB py File ;
) [3) object_detection_nocomment.py 1KB py File v
gas &) odssd.py 652 bytes py File .
output.mpd 14MB mp4 File i
B outputl.mpd 12MB mpd File -
%9 output2.mpa 1.2 MB mpd File -
[# outputrace.mp4 1.2 MB mp4 File &
&) ssd.py 7KB py File i
[s5d300_mAP_77.43_v2.pth 1003 MB pth File -1
>

<

Help Variable explorer File explorer

1Python console
1 Console 1/a £3

| (default, Aug 10

e inforn

> IPython console History log

Permizsions: RW __ End-of-lines: L Encoding: ASCII Line: 120 Column: 1 Memory: 72 %

<
Q Type here to search Hit 3 R A 3 mdx NG %7
v Hi 3 ! v S 09-04-2019

Fig 4.7

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 452

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

iv) Output images are shown below

Fig 4.8

Conclusion
After implementing all three frameworks we came to conclude each of these three as:

Viola Jones Algorithm:

We have presented an approach for object detection which minimizes computation time while achieving
high detection accuracy. The approach was used to construct a face detection system which is approximately
15 times faster than any previous approach. But it has some demerits like it can’t work properly with video
streaming frames. So, for this we have implemented SSD algorithm.

SSD: Single shot MultiBox detection framework:

A key feature of our model is the use of multi-scale convolutional bounding box outputs attached to multiple
feature maps at the top of the network. This representation allows us to efficiently model the space of
possible box shapes. Unlike CNN it can detect whole image in single shot. So, it saves our computation
time.

But it hasn’t any feature of generating a random image. So for this feature we used GANSs.

Generative Adversarial Network

Although GAN has several advantages but it is the best network for generating random images in less
amount of time. It can also be used for making Al chatbots and increasing or decreasing resolution of an
image with most efficient way.

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 453

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

REFERENCES

W Liu, D Anguelov, D Erhan, C Szegedy... - European conference on ..., 2016 — Springer
Ssd: Single shot multibox detector.

CP Papageorgiou, M Oren, T Poggio - Sixth International Conference ..., 1998 -
2 | acius.co.uk , A general framework for object detection

K Tieu, P Viola - International Journal of Computer Vision, 2004 — Springer
3 | Boosting image retrieval

P Viola, M Jones - CVPR (1), 2001, Rapid object detection using a boosted
4 | cascade of simple features

A Radford, L Metz, S Chintala - arXiv preprint arXiv:1511.06434, 2015 -
arxiv.org, Unsupervised representation learning with deep convolutional
generative adversarial networks

I Goodfellow, J Pouget-Abadie, M Mirza... - Advances in neural ..., 2014 -
6 | papers.nips.cc, Generative adversarial nets

https://www.superdatascientist.com/

7

8 https://www.github.com/

9 https://www.anaconda.org/

10 http://host.robots.ox.ac.uk/pascal/\VOC/

JETIR1905165 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 454

http://www.jetir.org/
https://scholar.google.co.in/citations?user=yFMX138AAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=T04c3fwAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=wfGiqXEAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=3QeF7mAAAAAJ&hl=en&oi=sra
https://link.springer.com/chapter/10.1007/978-3-319-46448-0_2
https://scholar.google.co.in/citations?user=WgAGy7wAAAAJ&hl=en&oi=sra
https://acius.co.uk/wp-content/themes/acius/machine_learning/research_papers/face_detection.pdf
https://scholar.google.co.in/citations?user=UQGZX48AAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=G2-nFaIAAAAJ&hl=en&oi=sra
https://link.springer.com/article/10.1023/B:VISI.0000004830.93820.78
https://scholar.google.co.in/citations?user=G2-nFaIAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=h-V4QaMAAAAJ&hl=en&oi=sra
https://www.researchgate.net/profile/Michael_Jones20/publication/3940582_Rapid_Object_Detection_using_a_Boosted_Cascade_of_Simple_Features/links/0f31753b419c639337000000.pdf
https://www.researchgate.net/profile/Michael_Jones20/publication/3940582_Rapid_Object_Detection_using_a_Boosted_Cascade_of_Simple_Features/links/0f31753b419c639337000000.pdf
https://scholar.google.co.in/citations?user=dOad5HoAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=k_u5ULgAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=36ofBJgAAAAJ&hl=en&oi=sra
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://scholar.google.co.in/citations?user=iYN86KEAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=c646VbAAAAAJ&hl=en&oi=sra
http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://www.superdatascientist.com/
https://www.github.com/
https://www.anaconda.org/
http://host.robots.ox.ac.uk/pascal/VOC/

