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ABSTRACT 

We propose a scale-adaptive crowd detection and counting 

approach for drone images. Based on local feature points 

and density estimation considering the image scale, we de- 

tect dense crowds over multiple distances and introduce an 

extremely fast counting strategy with high accuracy for our 

detected crowd regions. We compare our results with a recent 

CNN-based state-of-the-art approach and validate both meth- 

ods for different scaling factors on a novel crowd dataset. The 

results show that our proposed method outperforms the pre- 

trained CNN-based approach and receives very precise count- 

ing results for different zoom factors, resolutions and crowd 

sizes. Its low computational complexity makes it highly suit- 

able for real-time analysis or embedded systems. 

Index Terms— crowd counting, crowd detection, drone, 

real-time, surveillance 

 
1. INTRODUCTION 

The analysis of public events such as concerts, fan parks or 

sports events has recently emerged as a very important re- 

search field. For security agencies, police or crisis manage- 

ment teams, it is a challenging task to ensure security and 

avoid critical situations such as panics due to overcrowding. 

The Duisburg Loveparade 2010 or the 2014 Shanghai stam- 

pede are prominent examples for catastrophes caused by inad- 

equate overview and coordination during overcrowding situa- 

tions. Crowd detection as well as crowd counting techniques 

can help to prevent such accidents by providing crucial in- 

formation about the number of people and crowd density in 

a scene. An important factor here is the need for real-time 

analysis and a good overview. As street cameras usually have 

a small coverage area and often have been mounted for other 

purposes, video drones can be an alternative. 

Various approaches have been proposed for counting of 

smaller crowds based on street cameras [1, 2, 3, 4, 5, 6] but do 

not enable monitoring of dense crowds from different view- 

ing angles or distances, which is necessary for drone videos. 

A large-crowd approach for high-altitude aerial images (opti- 

mized for 1000m altitude) is demonstrated in [7]. The method 

 

 
applies a FAST feature detector to compute a density map and 

uses an image segmentation method to filter out non-crowd 

features. Afterwards, neighbourhood filtering with a fixed 

disc-shaped size is used for clustering close features and ob- 

taining the person count. Next to traditional methods, also 

CNN-based approaches get more attention and achieve dras- 

tically lower error rates for crowd counting [8]. A promising 

and novel CNN-based approach for crowd counting is given 

in [9]. The Cascaded-MTL approach learns globally relevant 

discriminative features and computes a density map to esti- 

mate the total count of people in the image. It allows differ- 

ent viewing angles and outperformed recent state-of-the-art 

methods for the highly challenging ShanghaiTech dataset. 

We propose a scale-adaptive real-time crowd detection 

and counting method for drone images (SARCCODI) with 

a viewing perspective related to real crowd monitoring use 

cases. Current German Regulation prohibits to fly directly 

over crowds, and a distance of at least the flying altitude to 

people has to be kept. Likewise, the altitude is restricted to 

a maximum of 100m. Thus, the typical viewing angle for 

drones is a 45 degrees bird’s eye view causing occlusions and 

perspective distortions which have to be taken into account. 

Similar as other approaches [7, 10, 11], SARCCODI is 

based on local feature points used as indication for the pres- 

ence of crowds. In contrast to [7], we rely on features from 

the luminance channel which renders an additional image seg- 

mentation unnecessary and is thus faster. Kernel density esti- 

mation and thresholding allow for detection of dense crowds 

in the image. In order to deal with distortions by the viewing 

angle, a semi-automatic method using an affine transforma- 

tion and a scale adaptation for multiple distances is used. 

We compare our method with [7] and the CNN-based 

Cascaded-MTL approach [9] on pictures from a drone per- 

spective which have been annotated manually for evaluation. 

 
2. PROPOSED METHOD 

2.1. Scale-Adaptive Crowd Detection 

Following [7], we assume that FAST features [12] can 

serve as a basis for estimating initial crowd positions due 
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(a) L-channel FAST features (b) Average density map 
 

 

(c) Segments by Otsu method (d) Filtered crowd segments 

 

Fig. 1: Processing steps for crowd detection on a real-world 

image with queues at a concert venue. 

 
to their ability to extract circular blob-like structures re- 

sembling human heads. Therefore, the input image is con- 

verted to CIELab color space and FAST features are com- 

puted on the L-channel (Fig. 1(a)). The resulting N points 

xi, yi  , i     1..N allow us to apply a probabilistic model 

to detect dense crowds: We compute a kernel density map 

over all feature points resulting in areas with high density 

values for dense crowd regions and areas with lower density 

indicating less people. The density value p(x, y) for each 

pixel location is obtained by a discrete and bivariate Gaussian 

probability density function (pdf): 

with hest,cent low as an estimate of a person’s height at the 

lower picture center and href as an according reference height 

obtained by training. rzoom is the scale difference of the cur- 

rent frame to a pre-trained model. Our raw data is HD content, 

hence the rather large filter size. For robustness, the density 

maps (Fig. 1(b)) can be averaged over time. 

In order to obtain the crowd position in the image, we 

apply Otsu’s automatic thresholding [13] to the density map, 

resulting in a binary segmentation image (Fig. 1(c)). While 

mostly large crowds are of interest for an application, the re- 

sult may also contain smaller segments. We filter out such 

false positives based on region size, expected number of fea- 

tures in a region and a minimally expected mean density. Fig. 

1 (d) shows the final crowd detection result. 

 
2.2. Crowd Counting Using the Image Scale 

The previously segmented crowd regions in the image are fur- 

ther evaluated for counting. Generally, the FAST features in a 

crowd do not match the number of people in that region. De- 

pending on the distance from the crowd and image resolution, 

several FAST features can be associated with one single per- 

son. To reduce unnecessary features, we use a grouping step 

with a circular shape and adaptively computed radius. 

Firstly all feature points of crowd Rn will be permuted 

and for a randomly chosen feature at position (xi, yi) we com- 

pute, depending on the density p(xi, yi) and the theoretical 

size of a person at (xi, yi), a specific radius r(xi, yi). In order 

to avoid overfitting parameters to training images, this step is 
approximated by a linearization: 

1 Σ (x − x )2 + (y − y )2 
 

 

 
 

 

where C is the normalization value to ensure p(x, y) [0, 1]. 
Due to the camera angle, drone images are heavily af- 

fected by scale differences in the scene. Additionally, the 

scale between different frames can vary because the drone 

may start taking pictures at a certain height and then changes 

its altitude or position during the video. These factors are con- 

sidered in our method by a) adapting σ to the camera view and 

b) applying a scale ratio to a pre-trained human height. 

Using a user annotation step, the heights h1, h2, h3 of 

three persons in the upper and lower picture border are de- 

termined and give an affine transformation M approximating 

a person’s height hest(x, y) at any position in the image. 

The bandwidth of the Gaussian kernel σ is then computed 

following the OpenCV1 standard approach: 

σ = 0.3 · ((ksize − 1) · 0.5 − 1) + 0.8 (2) 

using a frame-specific kernel window size 

hest,cent low 
 

 

with the scaling factor rsc 

    hest(xi, yi)  
rsc(xi, yi) = 

max(h , h , h ) 
(5) 

accounting for the camera view and rzoom as in (3). This 

allows us to use a single form (mostly) independent of the 

image scale. In our experiments, α = 16.41, β = 22.5 have 

generated good results but may not extend to all use cases. 

After assigning the radius, all other FAST features inside 

the disc shape are discarded and the steps are repeated until 

all features are processed. The number of circles then gives 

an estimate of the number of people in crowd Rn. In order to 

account for small variations between frames, we average the 

people count for each region Rn by buffering the counting re- 

sults of previous frames. Therefore, regions are tracked over 

time using the intersection-over-union (IOU) principle. 

 
3. EXPERIMENTS 

ksize = 
 

1www.opencv.org 

href 
· 101 = rzoom · 101 (3) 

Experimental validation is done on videos of two events from 

drone perspective which have been annotated manually. To 

sc C 
p(x, y) = (1) r(x , y ) = (α · p(x , y ) + β) · r (x , y ) · r (4) 

i=1 
2σ i i i i i i zoom 
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image WB 1 WB 2 WB 3 
 SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT 

crowd segment  Part A Part B   Part A Part B   Part A Part B  

1 27 37 16 33 125 93 45 108 119 77 50 99 

2 1728 1582 893 1985 1167 1054 288 1223 131 75 22 72 

3 79 77 63 96 108 77 22 112 883 710 439 880 

4 22 14 15 21         

image WB 4 WB 5 GS 1 
 SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT 

crowd segment  Part A Part B   Part A Part B   Part A Part B  

1 580 369 196 526 33 14 19 20 83 52 15 72 

2 50 37 24 40 487 342 258 485 1319 1096 686 1324 
 

Table 1: Counting results on Full HD images - bold values indicate errors of less than 5% (GT: ground truth). 

 

 
 

 

(a) WB 1 (b) WB 2 (c) WB 3 
 

 

(d) WB 4 (e) WB 5 (f) GS 1 

 

Fig. 2: Crowd detection results on Full HD resolution. 

 

Fig. 3: Density maps for image GS 1 (Left: [7], Center: [9], 

Right: SARCCODI). 

 

our knowledge, there are no accessible crowd datasets from 

drone perspective with ground truth (GT) for people count- 

ing. Our small set of test images is justified by the very time- 

consuming ground truth annotation for dense crowds. How- 

ever, for future publications, we plan to release a dataset of 

our images with annotations for benchmarking purposes. 

Fig. 2 shows results of our crowd detection for test im- 

ages in HD resolution. SARCCODI is able to detect dense 

crowds for different zoom scales. Non-crowd areas like cars 

are left out, also the system is not trained to detect individuals. 

Nonetheless, we can detect crowds even in great distances as 

shown in Fig. 2(f). 

Fig. 3 shows a comparison of SARCCODI’s density maps 

with the feature-based approach from [7] and the Cascaded- 

MTL method [9]. For this method, we used the public models 

Part A and Part B [14] trained on the ShanghaiTech dataset 

for different viewing angles and scales. It can be seen that 

both methods estimate a significant crowd density in areas 

without people (e.g. on trees) while the main crowd is not 

segmented as a whole. It appears that especially the method 

from [7] optimized for higher camera altitudes rather founds 

salient color features than complete crowds. Therefore, for 

crowd counting, we will only consider the CNN-based ap- 

proach from [9] which estimates the total number of people 

for a whole image without segmentation. To ensure a fair, 

segmentation-independent comparison, we thus multiply the 

density map from [9] with SARCCODI’s segmentation of the 

currently considered crowd and leave out potential false de- 

tections in non-crowded areas reducing the accuracy of [9]. 

To obtain the ground truth for the considered crowd, we also 

use multiplication with the respective binary mask. 

Results on HD images are shown in Tab. 1. For almost all 

crowds, SARCCODI outperforms both Cascaded-MTL mod- 

els and achieves a much lower error (i.e. for the large crowds 

less than 1% on WB 3, WB 5 and GS 1). Smaller groups of 

less than 500 people are usually estimated with an error of 

less than   20 people. Although trained for multiple view- 

ing angles and scales, the Cascaded-MTL in general obtains 

much higher errors and only Part A obtains acceptable results 

for very small crowds. 

As an additional test, zooming has been simulated by 

downsampling the input images by a range of values from 

Full HD resolution to a scale of 0.25. Scale changes affect 

both the density estimate and also the segmentation when 

individual crowds in high resolution are merged to one sin- 

gle crowd in a scaled image (see Fig. 5). Our ground truth 

accounts for such segmentation changes. 

Tab. 2 shows counting results of our scaling experiments 

using the biggest crowd in each image. Related error rates are 

shown in Fig. 4 (a-c). SARCCODI achieves mostly stable 

counting results for different scales in the range from HD720 

to Full HD. Errors here are lower than 15%. In contrast, the 

error for Cascaded-MTL increases stronger for lower image 

resolutions and becomes higher than 50% for a scale of 0.5. 

This shows that our proposed scale-adaptive strategy works 

and is especially effective for scale changes up to 0.6. For 

lower resolution, the error increases due to a smaller number 

of FAST features. 

The effect of the introduced scale-factor rzoom can be 

seen in Fig. 4 (d). The red curve shows the counting error 

for different scales with a constant zoom factor rzoom = 1 

http://www.jetir.org/
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image WB 1 WB 2 WB 3 
 SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT 

scaling factor  Part A Part B   Part A Part B   Part A Part B  

1 (Full HD) 1728 1582 893 1985 1167 1054 288 1223 883 710 439 800 

0.875 1736 1356 883 1972 1089 868 289 1224 859 606 403 797 

0.75 1846 1326 565 2014 1096 819 143 1236 845 567 269 803 

0.666 (HD720) 1887 1158 442 2022 1193 701 110 1360 810 505 160 803 

0.625 1799 1186 407 2014 1092 704 97 1363 769 495 126 808 

0.5 1743 1050 176 2135 980 528 26 1390 783 414 59 811 

0.444 (FWVGA) 1740 812 131 2177 984 375 16 1407 724 317 32 827 

0.375 1696 690 77 2229 841 292 13 1411 655 254 21 828 

0.25 1221 328 7 2280 513 77 0 1410 387 77 4 835 

image WB 4 WB 5 GS 1 
 SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT SARCCODI Cascaded MTL [9] GT 

scaling factor  Part A Part B   Part A Part B   Part A Part B  

1 (Full HD) 580 369 196 526 487 342 258 485 1319 1096 686 1324 

0.875 527 311 165 521 478 308 259 488 1121 882 509 1217 

0.75 535 301 114 538 497 305 191 489 1101 825 346 1249 

0.666 (HD720) 568 252 76 550 510 275 136 495 1122 718 212 1248 

0.625 564 246 65 548 519 281 128 513 1108 682 207 1255 

0.5 557 185 41 574 484 236 66 488 1132 527 109 1434 

0.444 (FWVGA) 583 130 20 579 547 199 46 518 1159 420 67 1462 

0.375 506 82 13 585 548 175 33 521 1074 320 51 1554 

0.25 403 6 1 588 429 58 6 527 736 118 6 1579 
 

Table 2: Counting results for different resolutions (errors less than 5% bold). GT varies with changing segmentation masks. 
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Fig. 5: Scaling slightly changes the crowd detection results 

because individuals may be connected to crowds. 
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4. CONCLUSION 

We proposed SARCCODI, a scale-adaptive crowd detection 

and counting method for drone images with real-time perfor- 

mance. Our approach outperforms the CNN-based Cascaded- 

MTL approach and is able to count extremely dense crowds 

with high precision. By introducing a scale-adaptive zoom- 

Fig. 4: Comparison of counting error for different scale fac- 

tors (a-c). Error comparison for adaptive kernel bandwidth / 

adaptive counting strategy in SARCCODI on WB 3 (d). 

 

in Eq. 4 and a varying rzoom in Eq. 2, 3. The blue curve 

represents the opposite combination of a fixed bandwidth 

and scale-adaptive counting. The combination of both (pink) 

achieves a much lower counting error for most scales. 

SARCCODI has a very low computational footprint and 

enables real-time crowd detection and counting for Full HD 

images. The currently required processing time of our com- 

plete single-threaded, non-optimized detection and counting 

method requires about 230ms per frame on a i7-7700 CPU @ 

3.60GHz PC, including 6ms for the counting process. 

factor, we show that stable results can be achieved for a va- 

riety of different image scales which is important for drone 

applications. Thanks to its low computational complexity, 

SARCCODI could be run as an embedded method directly 

in drone systems. In our future work we plan to replace the 

semi-automatic scale adaptation through an automatic cam- 

era calibration system, which enables estimation of the zoom- 

factor without any additional human interaction. 
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