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Abstract : In this paper, we introduce the sequence spaces i’;} (A) and £2,(A) of non-absolute type and prove that the spaces {’%(A)
and £ (A) are linearly isomorphic for 0 < p < c. We show that f;}(A) is a p —normed space for 0 < p < 1 and BK-space for
1 < p < oo. Further, we derive some inclusions on {’Q(A). Finally, we construct a basis for {’Q(A).
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. INTRODUCTION.

By {t,.} , we denote the sequence, where t,, € R or C for all n € N. A universal sequence space (w, +,.),
w={{t,}:t, ERorCVne N}
2, = {{ta} € Wi}
o = {{t,} Ew:|t,| <K for some K € [0,0)}
co = {{t,} e w:t, —> 0}
c={{t.} Ew:t, > a, @ € Ror Caccording t, € Ror CV n € N}
€ L0, Co, € are subspaces of w. A sequence space Q with linear topology is said to be K —space if the functiony,:Q - C,
v ({tn}) = t is continuous Vk € N. If a K —space  is a complete linear metric space then it is called as FK —space further a
FK —space with normable topology is known as BK —space (Nanda, 1989). 4., ¢y, ¢ are BK —spaces with respect to the norm
[I{t.}1| = sup |t,|. Also ¢, is a BK — space (Maddox, 1988)with norm,
n

(Dl i peoD

n

el = :
P | _ -
t@w) ;. pellw)

Let M = [a,,q] be an infinite matrix, a,, € R or C, p,q € N. Then M defines a matrix mapping from a sequence space { to
sequence space O if for each t = {tq} € Q the sequence Mt = {M,(t)}, where

M, (0) = Z ®pqtq

q

The family of all M's that map € into © is denoted by (Q: ©). For a sequence space (2, the domain of M in € is defined as
Qr={tew: MteQ}

Q,, itself a sequence space.
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Constructing a sequence space by means of matrix domain has been employed by many authors. The approach of constructing a
new sequence space by means of the matrix domain of a particular limitation method has recently been employed by several
authors, e.g., Wang [19], Ng and Lee [18], Malkowsky [12], Basar and Altay [7], Malkowsky and Savas [13], Aydin and Basar
[3, 4, 5, 6], Altay and Basar [1], Altay, Basar and Mursaleen [2, 14] and Mursaleen and Noman [15, 16], respectively. They

introduced the sequence spaces (i’w),\,q and cn, in [19], ({x)¢, = Xo and (1?1,)61 = X, in [18], (£oo)pt = 1%, Cpe = 7¢ and
(co)ge = 1§ in [12], (&), = bvy in [7], g = Z(w,v; 1) in [13], (co)ar = af and car = af in [3], [co(w, p)]4r = aj(w, p) and
[c(w,p)ar = at(u,p) in [4], (a})s = a§(8) and (al)a = aZ(A) in [5], (€,),, = ap and (€e,),r = al in [6], (co)gr = e and
cgr = el in[1], (f,,)E, = ef and (£o,)gr = el in [2,14], (co)x = ¢f and ¢; = c*in[15] and (cf), = c§(4) and (c*), = c*(8)
in [16], where N, Cy,R® and E™ denote the Nérlund, Cesaro, Riesz and Euler means, respectively, A denotes the band matrix
defining the difference operator, G and A" are defined in [13] and [3], respectively, A is defined in Section 2, below, u €
{co, c, {’p} and 1 < p < . Also ¢,(u, p) and c(u, p) denote the sequence spaces generated from the Maddox's spaces c,(p) and
c(p) by Basar1 [8]. Verma[22] introduced the soft real sequences. Noman [21] introduced the sequence spaces {’% and £4 of non-

absolute type. The Main purpose of this paper is to introduce the sequence spaces f{}(A) and £2 (A) of non-absolute type and to
derive some results.

I. 2-boundedness and p-absolute convergence of type 4

Suppose, 1 = {4}, k € 0,1,2, ... be a sequence such that 0 < Ak < Ay4qdiverges to oo, Define,

Ay (t) = =, Z(/lk — A=)tk
A_; =0, neN. A sequence t = {t,} ew is said to be A bounded [21] if sup |A,(t)] € R. Also the series Y, t; is p-

absolutely,p € (0, ), convergent of type A if }.,,|A,, (£)|P converges to real number

Lemma 2.1. Asequence t = {t,} € £, implies t is A-bounded.
Define an infinite matrix A = [A k=012, bY

A = Ag—1

/1nk = An

0 ik>n
Then, for t = {t,} € w, the A —transform of ¢ is given by A(t) = {A,(t)}. Therefore t is A —bounded iff A(t) € £,,.
p —absolute convergence of type A and of sequence t and A(t) € ¢, both are equivalent. The matrix A is a lower triangular
matrix.
Recently, cf (A)and c* (A) have been defined by (M. Mursaleen, 2010) and shown the inclusion relation ¢, c cf(A) ©
c*(A),c © c*(A). Finally, we define the the sequence s(1) = {s, (1)} for the use of A —transform of a sequence t that is s(1) =

A(t) and so, )
s(A) = Z ( >tm;

m=0

i k<n

I11. The sequence spaces B,’}(A) and £4,(A) of non-absolute type

In this section we introduce the sequence spaces 5 (A) and €& (A) as follows,

n
1
Zz Al Ay
k=0

P
ER];(0<p<OO)

n
1
Y wan e
An

k=0

Where, A, = A — Ag—y , Axy. = Xx) — X1 Obviously, £4,(A) and £7(A), (0 < p < o) are sequence spaces.

23(8) ={ =

and

A (D) = {t = (t;) € w:sup

Theorem 3.1. We have the following:
(a) For, p € (0,1), then f{‘,(A) is a complete p-normed space with the p-norm || x ||{,%= I ACx) I, ie

12 lg= )" GO (0<p <1)

n
(b) If 1 < p < oo, then £} is a BK-space with the norm || x II[%zll A(x) llg,, that is

1/p
I Wz = (Z IAn(x)|P> ; (1<p <)

and
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I llgz, = sup A, ()]
n

Theorem 3.2. The sequence space {’Q(A) of non-absolute type is isometrically isomorphic to the space £,,(A) forp > 0.
Proof. First we show the existence of an isometric isomorphism between the spaces {’;} (A) and £, (A). For, let p > 0 and consider
the transformation T defined, from {’z’}(A) to £, by x — y(4) = Tx. Then, we have Tx = y(1) = A(x) € £, for every x €
l’,’}.AIso, the linearity of T is trivial. Further, it is easy to see that x = 0 whenever Tx = 0 and hence T is injective.
Furthermore, let y = (y,) € £, be given and define the sequence x = {x, (1)} by

k

@)= Y (D

A
k—ly]’ (k € N)
k=1

Then,

A (x) = (A — A=) x (D)

k
> Dy,
=k~

1

=

J

?‘IH
D1 - 1D

MYk — Ak-1Yk-1)

Nl,,_;

n

=Yn
This shows that A(x) =y and since y € £,,, we obtain that A(x) € £,. Thus, we deduce that x € f;} and Tx =y. Hence T is
surjective.

Moreover, for any x € £;(A) , we have by Theorem 3.1 that

I Tx N, =l y (D) e, =N AX) lle, =1l x II[%
which shows that T is p-norm and norm preserving in the cases of 0 <p < 1and 1 < p < oo, respectively. Hence T is isometry.
Consequently, the spaces #{‘,(A) and £, (4) are isometrically isomorphic for 0 < p < co. This concludes the proof.

=
I}
o

IVV. Some inclusion relations

We show that the inclusion ., < €% (A) holds and characterize the case in which the inclusion ¢, ¢ £#(A) holds for p > 1.
Lemma 4.1. For any sequence t = (t;) € w, the equalities
Sp() =t — Ap(t); (n €N)
and
o (A (8) = Ay (D); (R EN)
/171 K An—l
hold, where S(t) = {S,,(t)} is the sequence defined by
n

1
Sa() =0 and S,(6) = 7 > Ay (b = toa)s (02 1)
=1

Sp () =

Lemma 4.2. For any sequence A = (1;)r-,, We have

Ak @ ; FPRT Ak+1 _
©) (Ak v 1)k . ¢ 4, if and only if lim inf,_, ek 1.

o . et . Akt1
( )(Ak . 1)}( € ¢, ifand only if lim infi._., 2422 > 1.

Theorem 4.3. If 0 < p < q < oo, then the inclusion £ (A) < £(A) strictly holds.

Proof. Let 0 < p < g < oo. Then, it follows by the inclusion £, £, that the inclusion {’Q(A) c {’Q(A) holds. Further, since the
inclusion £, c £, is strict, there is a sequence t = (t;) in £, but notin £, i.e., t € £, \ £,. Let us now define the sequence s =
(sy) in terms of the sequence ¢ as follows:

At = Ap—ati-1
Sk = p— ; (k €N)
Then, we have for every n € N that
n

1
() =7 (it = iatie ) = by
" k=0

which shows that A(s) = t and hence A(s) € €, \ £,. Thus, the sequence s is in €4 but not in 3. Hence, the inclusion ¢} c £7 is
strict. This concludes the proof.

Theorem 4.3. The inclusions #A(A) c cd(A) c c*(D) c £4(A) strictly hold, where p > 0.

Proof. Since the inclusion cf(A) c c*(A) strictly holds, it is enough to show that the inclusions {’A(A) c cf(A) and c*(A)
22 () are strict, where p > 0.

Firstly, it is trivial that the inclusion f’l(A) c c(A) holds for p > 0, since t € {’”(A) implies A(t) € £, and hence A(t) € ¢,
which means that ¢t € c$(A). Further, to show that this inclusion is strict, let p > 0 and consider the sequence t = (t,) defined by
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= gerp EN
Then t € ¢, and hence t € cf(A), since the inclusion ¢, c c{(A) holds. On the other hand, we have for every n € N that
n
1 /‘{k - A‘k—l

A, ()] = Zk_o W

n
1
> nr g, e
k=0

_ 1

T (n+1)p
which shows that A(t) & ¢, and hence x & £}(A) . Thus, the sequence x is in c¢f(A) but not in £4(A) . Therefore, the inclusion
£4(8) < ¢ (A) isstrict for 0 < p < .
Similarly, it is also clear that the inclusion c*(A) c £4 (A) holds. To show that this inclusion is strict, we define the sequence s =

(s) by
A + A

; (keN
Ak_/lk—1> ( )

5= (0¥

Then, we have for every n € N that
1 N k n
An(5) =5 (“DFCh + Ao) = (=1)
™ k=0
which shows that A(s) € 4., \ c. Thus, the sequence s is in £2,(A) but not in ¢#(A) and hence c* < £2,(A) is a strict inclusion.

Theorem 4.4. The relation £, < £4 (A) holds. Further, the equality holds if and only if S(t) € 2., for every sequence x € £2 (A).
Proof. The first part of the theorem is immediately obtained from Lemma 2.1, and so we turn to the second part. For, suppose
firstly that the equality £2(A) = £, holds. Then, the inclusion 2 (A) c £., holds and S(t) € £, for every t € £2,.

Conversely, suppose that S(t) € £, for every t € £4(A). Then, the inclusion £4(A) c £, holds. Combining this with the
inclusion £, © £ (A), we get the equality £4 (A) = £,,. This completes the proof.

V. The basis for the space £5(A)

We discuss about the basis of f,’}(A). If a normed space X contains a sequence (b,,) with the property that for every t € X there is
a unique sequence (a,,) of scalars such that
%im ”t ’ (aobo + albl + -+ anbn)” =0

then (b,,) is called a Schauder basis (or briefly basis) for X. The series Y, a; b, Which has the sum t is then called the expansion
of x with respect to (b,,), and written as t = Y, a;.by.

Theorem 5.1. Let 1 < p < oo and define the sequence eﬁk) € {’,’} (A) for every fixed k € N by

X
-)kF——; (k<n<k+1
(), ={ TV = ¢ )(nen)

0; ( otherwise )
Then, the sequence (e)Ek))k=0 is a basis for the space #{}(A) and every t € f{}(A) has a unique representation of the form

t= Z Ar(t)el

k
Proof. Let 1 < p < w. Then, A(e{) = e® € £,(k € N) and hence e € £4(4) forall k € N.
Further, let t € {’;}(A) be given. For every non-negative integer m, we put

m
tm) = Z Ar(t)el
k=0

Then, we have that

A(Em™) = Z Ae®AE) = Z Ap(D)e®
k=0 k=0

and hence
0; 0<n<m)
—tm) =
An(t = £) {An(t); (n > m)
Now, for any given € > 0 there is a non-negative integer m, such that

> nors ()

n=mg+1

(n,meN)

Therefore, we have for every m > m, that
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/p
1A, (t)|p>

1/p

llxx = x ™1,

||
-~

1A (1P

IA
[\JI f'f\/_\
II
3
+
=

which shows that lim,,,_, it — t(m)ii% =0.

Finally, of t € fz’}(A). For this, suppose that t = Y, a; (x)eﬁk). Since the linear transformation T defined from ?Q(A) to £, in the
proof of Theorem 3.3, is continuous, we have

M=) 6®hn(ef?) = ) 68 = tn( (nEN)
k k
Hence, t € {’;}(A) is unique. This completes the proof.
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