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Abstract :  In this paper, we introduce the sequence spaces ℓ𝑝
𝜆(Δ) and ℓ∞

𝜆 (Δ) of non-absolute type and prove that the spaces ℓ𝑝
𝜆(Δ) 

and ℓ∞
𝜆 (Δ) are linearly isomorphic for 0 < 𝑝 < ∞. We show that ℓ𝑝

𝜆(Δ) is a 𝑝 −normed space for 0 < 𝑝 < 1 and 𝐵𝐾-space for 

1 ≤ 𝑝 < ∞. Further, we derive some inclusions on ℓ𝑝
𝜆(Δ). Finally, we construct a basis for  ℓ𝑝

𝜆(Δ). 

 

IndexTerms - Sequence spaces, convergence, boundedness, linear isomorphism. 

I. INTRODUCTION. 

 

By {𝑡𝑛} , we denote the sequence, where 𝑡𝑛 ∈ ℝ 𝑜𝑟 ℂ for all 𝑛 ∈ ℕ. A universal sequence space (𝑤, +, . ), 
𝑤 = {{𝑡𝑛}: 𝑡𝑛 ∈ ℝ 𝑜𝑟 ℂ ∀ 𝑛 ∈ ℕ} 
ℓ𝑝 = {{𝑡𝑛} ∈ 𝑤: } 

ℓ∞ = {{𝑡𝑛} ∈ 𝑤: |𝑡𝑛| ≤ 𝐾 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐾 ∈ [0,∞)} 
𝑐0 = {{𝑡𝑛} ∈ 𝑤: 𝑡𝑛 → 0} 

𝑐 = {{𝑡𝑛} ∈ 𝑤: 𝑡𝑛 → 𝛼,   𝛼 ∈ ℝ 𝑜𝑟 ℂ 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑛 ∈ ℝ 𝑜𝑟 ℂ ∀ 𝑛 ∈ ℕ} 

ℓ𝑝, ℓ∞, 𝑐0, 𝑐 are subspaces of 𝑤. A sequence space Ω with linear topology is said to be 𝐾 −space if the function 𝛾𝑘: Ω → ℂ, 

𝛾𝑘({𝑡𝑛}) = 𝑡𝑘 is continuous ∀𝑘 ∈ ℕ. If a 𝐾 −space Ω is a complete linear metric space then it is called as 𝐹𝐾 −space further a 

𝐹𝐾 −space with normable topology is known as 𝐵𝐾 −space (Nanda, 1989). ℓ∞, 𝑐0, 𝑐 are 𝐵𝐾 −spaces with respect to the norm 

||{𝑡𝑛}|| = sup
𝑛
|𝑡𝑛|. Also ℓ𝑝 is a 𝐵𝐾 − 𝑠𝑝𝑎𝑐𝑒 (Maddox, 1988)with norm, 

||{𝑡𝑛}||ℓ𝑝
=

{
 
 

 
 ∑|𝑡𝑛|

𝑝          ;             𝑝 ∈ (0,1)

𝑛

(∑|𝑡𝑛|
𝑝

𝑛

)

1

𝑝

  ;            𝑝 ∈ [1,∞)

 

Let ℳ = [𝛼𝑝𝑞] be an infinite matrix, 𝛼𝑝𝑞 ∈ ℝ 𝑜𝑟 ℂ, 𝑝, 𝑞 ∈ ℕ. Then ℳ defines a matrix mapping from a sequence space Ω to 

sequence space Θ if for each 𝑡 = {𝑡𝑞} ∈ Ω the sequence ℳ𝑡 = {ℳ𝑝(𝑡)}, where 

ℳ𝑝(𝑡) =∑𝛼𝑝𝑞𝑡𝑞
𝑞

 

The family of all ℳ′𝑠 that map Ω into Θ is denoted by (Ω:Θ). For a sequence space Ω, the domain of ℳ in Ω is defined as  

Ωℳ = {𝑡 ∈ 𝑤 ∶  ℳ𝑡 ∈ Ω} 

Ωℳ itself  a sequence space.  
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Constructing a sequence space by means of matrix domain has been employed by many authors. The approach of constructing a 

new sequence space by means of the matrix domain of a particular limitation method has recently been employed by several 

authors, e.g., Wang [19], Ng and Lee [18], Malkowsky [12], Başar and Altay [7], Malkowsky and Savaş [13], Aydın and Başar 

[3, 4, 5, 6], Altay and Başar [1], Altay, Başar and Mursaleen [2, 14] and Mursaleen and Noman [15, 16], respectively. They 

introduced the sequence spaces (ℓ∞)𝑁𝑞 and 𝑐𝑁𝑞 in [19], (ℓ∞)𝐶1 = 𝑋∞ and (ℓ𝑝)𝐶1
= 𝑋𝑝 in [18], (ℓ∞)𝑅𝑡 = 𝑟∞

𝑡 , 𝑐𝑅𝑡 = 𝑟𝑐
𝑡 and 

(𝑐0)𝑅𝑡 = 𝑟0
𝑡 in [12], (ℓ𝑝)Δ = 𝑏𝑣𝑝 in [7], 𝜇𝐺 = 𝑍(𝑢, 𝑣; 𝜇) in [13], (𝑐0)𝐴𝑟 = 𝑎0

𝑟 and 𝑐𝐴𝑟 = 𝑎𝑐
𝑟 in [3], [𝑐0(𝑢, 𝑝)]𝐴𝑟 = 𝑎0

𝑟(𝑢, 𝑝) and 

[𝑐(𝑢, 𝑝)]𝐴𝑟 = 𝑎𝑐
𝑟(𝑢, 𝑝) in [4], (𝑎0

𝑟)Δ = 𝑎0
𝑟(Δ) and (𝑎𝑐

𝑟)Δ = 𝑎𝑐
𝑟(Δ) in [5], (ℓ𝑝)𝐴𝑟 = 𝑎𝑝

𝑟  and (ℓ∞)𝐴𝑟 = 𝑎∞
𝑟  in [6], (𝑐0)𝐸𝑟 = 𝑒0

𝑟 and 

𝑐𝐸𝑟 = 𝑒𝑐
𝑟 in [1], (ℓ𝑝)𝐸𝑟 = 𝑒𝑝

𝑟 and (ℓ∞)𝐸𝑟 = 𝑒∞
𝑟  in [2,14], (𝑐0)Λ = 𝑐0

𝜆 and 𝑐Λ = 𝑐
𝜆 in [15] and (𝑐0

𝜆)
Δ
= 𝑐0

𝜆(Δ) and (𝑐𝜆)
Δ
= 𝑐𝜆(Δ) 

in [16], where 𝑁𝑞 , 𝐶1, 𝑅
𝑡 and 𝐸𝑟 denote the Nörlund, Cesàro, Riesz and Euler means, respectively, Δ denotes the band matrix 

defining the difference operator, 𝐺 and 𝐴𝑟 are defined in [13] and [3], respectively, Λ is defined in Section 2, below, 𝜇 ∈

{𝑐0, 𝑐, ℓ𝑝} and 1 ≤ 𝑝 < ∞. Also 𝑐0(𝑢, 𝑝) and 𝑐(𝑢, 𝑝) denote the sequence spaces generated from the Maddox's spaces 𝑐0(𝑝) and 

𝑐(𝑝) by Başarı [8]. Verma[22] introduced the soft real sequences. Noman [21] introduced the sequence spaces ℓ𝑝
𝜆 and ℓ∞

𝜆  of non-

absolute type. The Main purpose of this paper is to introduce the sequence spaces ℓ𝑝
𝜆(Δ) and ℓ∞

𝜆 (Δ) of non-absolute type and to 

derive some results. 

II. 𝝀-boundedness and 𝒑-absolute convergence of type 𝝀 

Suppose, 𝜆 = {𝜆𝑘}, 𝑘 ∈ 0,1,2,… be a sequence such that 0 < 𝜆𝑘 < 𝜆𝑘+1diverges to ∞. Define, 

Λ𝑛(𝑡) =
1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)𝑡𝑘

𝑛

𝑘=0

 

𝜆−1 = 0, 𝑛 ∈ ℕ. A sequence 𝑡 = {𝑡𝑘} ∈ 𝑤 is said to be 𝜆-bounded [21] if sup
𝑛
|Λ𝑛(𝑡)| ∈ ℝ. Also the series ∑ 𝑡𝑘𝑘  is 𝑝-

absolutely,𝑝 ∈ (0,∞), convergent of type 𝜆 if ∑ |Λ𝑛(𝑡)|
𝑝

𝑛  converges to real number. 

 

Lemma 2.1.  A sequence 𝑡 = {𝑡𝑘} ∈ ℓ∞ implies 𝑡 is 𝜆-bounded. 

Define an infinite matrix Λ = [𝜆𝑛𝑘]𝑛,𝑘=0,1,2,… by 

𝜆𝑛𝑘 = {

𝜆𝑘 − 𝜆𝑘−1
𝜆𝑛

   ; 𝑘 ≤ 𝑛

0                    ; 𝑘 > 𝑛

 

Then, for 𝑡 = {𝑡𝑘} ∈ 𝑤, the Λ −transform of  𝑡 is given by Λ(𝑡) = {Λ𝑛(𝑡)}. Therefore 𝑡 is 𝜆 −bounded iff Λ(𝑡) ∈ ℓ∞. 

𝑝 −absolute convergence of type 𝜆 and of sequence 𝑡 and Λ(𝑡) ∈ ℓ∞ both are equivalent. The matrix Λ is a lower triangular 

matrix. 

Recently, 𝑐0
𝜆 (Δ) and 𝑐 

𝜆 (Δ) have been defined by (M. Mursaleen, 2010) and shown the inclusion relation 𝑐0 ⊂ 𝑐0
𝜆(Δ) ⊂

𝑐𝜆(Δ), 𝑐 ⊂ 𝑐𝜆(Δ). Finally, we define the the sequence 𝑠(𝜆) = {𝑠𝑘(𝜆)} for the use of Λ −transform of a sequence 𝑡 that is 𝑠(𝜆) =
Λ(𝑡) and so, 

𝑠𝑘(𝜆) = ∑ (
𝜆𝑚 − 𝜆𝑚−1 

𝜆𝑘
) 𝑡𝑚 ; 

𝑘

𝑚=0

 

 

 

III. The sequence spaces 𝓵𝒑
𝝀(𝚫) and 𝓵∞

𝝀 (𝚫) of non-absolute type 

In this section we introduce the sequence spaces ℓ𝑝
𝜆(Δ) and ℓ∞

𝜆 (Δ) as follows, 

ℓ𝑝
𝜆(Δ) = {𝑡 = (𝑡𝑘) ∈ 𝑤:∑  

∞

𝑛=0

  |
1

𝜆𝑛
∑ 

𝑛

𝑘=0

 Δ𝜆𝑘 Δ𝑥𝑘|

𝑝

∈ ℝ} ;  (0 < 𝑝 < ∞) 

 

and 

ℓ∞
𝜆 (Δ) = {𝑡 = (𝑡𝑘) ∈ 𝑤: sup

𝑛
  |
1

𝜆𝑛
∑ 

𝑛

𝑘=0

 Δλk Δ𝑥𝑘| ∈ ℝ} 

Where, Δ𝜆𝑘 = 𝜆𝑘 − 𝜆𝑘−1 , Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1. Obviously, ℓ∞
𝜆 (Δ) and ℓ𝑝

𝜆(Δ), (0 < 𝑝 < ∞) are sequence spaces. 

 

 

Theorem 3.1. We have the following: 

(a) For, 𝑝 ∈ (0,1), then ℓ𝑝
𝜆(Δ) is a complete 𝑝-normed space with the 𝑝-norm ∥ 𝑥 ∥ℓ𝑝𝜆= ∥ Λ(𝑥) ∥ℓ𝑝, i.e. 

∥ 𝑥 ∥ℓ𝑝𝜆=∑ 

𝑛

  |Λ𝑛(𝑥)|
𝑝;  (0 < 𝑝 < 1)  

(b) If 1 ≤ 𝑝 ≤ ∞, then ℓ𝑝
𝜆 is a BK-space with the norm ∥ 𝑥 ∥ℓ𝑝𝜆=∥ Λ(𝑥) ∥ℓ𝑝, that is 

∥ 𝑥 ∥ℓ𝑝𝜆= (∑ 

𝑛

  |Λ𝑛(𝑥)|
𝑝)

1/𝑝

;  (1 ≤ 𝑝 < ∞)  

and 
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∥ 𝑥 ∥ℓ∞𝜆 = sup
𝑛
 |Λ𝑛(𝑥)|  

 

Theorem 3.2. The sequence space ℓ𝑝
𝜆(Δ) of non-absolute type is isometrically isomorphic to the space ℓ𝑝(Δ) for 𝑝 > 0. 

Proof. First we show the existence of an isometric isomorphism between the spaces ℓ𝑝
𝜆(Δ) and ℓ𝑝(Δ). For, let 𝑝 > 0 and consider 

the transformation 𝑇 defined, from ℓ𝑝
𝜆(Δ)  to ℓ𝑝 by 𝑥 ⟼ 𝑦(𝜆) = 𝑇𝑥. Then, we have 𝑇𝑥 = 𝑦(𝜆) = Λ(𝑥) ∈ ℓ𝑝 for every 𝑥 ∈

ℓ𝑝
𝜆.Also, the linearity of 𝑇 is trivial. Further, it is easy to see that 𝑥 = 0 whenever 𝑇𝑥 = 0 and hence 𝑇 is injective. 

Furthermore, let 𝑦 = (𝑦𝑘) ∈ ℓ𝑝 be given and define the sequence 𝑥 = {𝑥𝑘(𝜆)} by 

𝑥𝑘(𝜆) = ∑  

𝑘

𝑗=𝑘−1

  (−1)𝑘−𝑗
𝜆𝑗

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑗;  (𝑘 ∈ ℕ)  

Then,  

Λ𝑛(𝑥) =
1

𝜆𝑛
∑ 

𝑛

𝑘=0

  (𝜆𝑘 − 𝜆𝑘−1)𝑥𝑘(𝜆)

 =
1

𝜆𝑛
∑ 

𝑛

𝑘=0

  ∑  

𝑘

𝑗=𝑘−1

  (−1)𝑘−𝑗𝜆𝑗𝑦𝑗

 =
1

𝜆𝑛
∑ 

𝑛

𝑘=0

  (𝜆𝑘𝑦𝑘 − 𝜆𝑘−1𝑦𝑘−1)

 = 𝑦𝑛

 

This shows that Λ(𝑥) = 𝑦 and since 𝑦 ∈ ℓ𝑝, we obtain that Λ(𝑥) ∈ ℓ𝑝. Thus, we deduce that 𝑥 ∈ ℓ𝑝
𝜆 and 𝑇𝑥 = 𝑦. Hence 𝑇 is 

surjective. 

Moreover, for any 𝑥 ∈ ℓ𝑝
𝜆(Δ) , we have by Theorem 3.1 that 

∥ 𝑇𝑥 ∥ℓ𝑝=∥ 𝑦(𝜆) ∥ℓ𝑝=∥ Λ(𝑥) ∥ℓ𝑝=∥ 𝑥 ∥ℓ𝑝𝜆  

which shows that 𝑇 is 𝑝-norm and norm preserving in the cases of 0 < 𝑝 < 1 and 1 ≤ 𝑝 ≤ ∞, respectively. Hence 𝑇 is isometry. 

Consequently, the spaces ℓ𝑝
𝜆(Δ) and ℓ𝑝(Δ) are isometrically isomorphic for 0 < 𝑝 ≤ ∞. This concludes the proof. 

 

IV. Some inclusion relations 

We show that the inclusion ℓ∞ ⊂ ℓ∞
𝜆 (Δ) holds and characterize the case in which the inclusion ℓ𝑝 ⊂ ℓ𝑝

𝜆(Δ)  holds for p > 1. 

Lemma 4.1. For any sequence 𝑡 = (𝑡𝑘) ∈ 𝑤, the equalities 

𝑆𝑛(𝑡) = 𝑡𝑛 − Λ𝑛(𝑡);  (𝑛 ∈ ℕ)  

and 

𝑆𝑛(𝑡) =
𝜆𝑛−1

𝜆𝑛 − 𝜆𝑛−1
[Λ𝑛(𝑡) − Λ𝑛−1(𝑡)];  (𝑛 ∈ ℕ)  

hold, where 𝑆(𝑡) = {𝑆𝑛(𝑡)} is the sequence defined by 

𝑆0(𝑡) = 0  and  𝑆𝑛(𝑡) =
1

𝜆𝑛
∑ 

𝑛

𝑘=1

𝜆𝑘−1(𝑡𝑘 − 𝑡𝑘−1);  (𝑛 ≥ 1) 

 

 

Lemma 4.2. For any sequence 𝜆 = (𝜆𝑘)𝑘=0
∞ , we have 

(a) (
𝜆𝑘

𝜆𝑘−𝜆𝑘−1
)
𝑘=0

∞

∉ ℓ∞ if and only if lim inf𝑘→∞  
𝜆𝑘+1

𝜆𝑘
= 1. 

(b) (
𝜆𝑘

𝜆𝑘−𝜆𝑘−1
)
𝑘=0

∞

∈ ℓ∞ if and only if lim inf𝑘→∞  
𝜆𝑘+1

𝜆𝑘
> 1. 

Theorem 4.3. If 0 < 𝑝 < 𝑞 < ∞, then the inclusion ℓ𝑝
𝜆(Δ)  ⊂ ℓ𝑞

𝜆(Δ) strictly holds. 

Proof. Let 0 < 𝑝 < 𝑞 < ∞. Then, it follows by the inclusion ℓ𝑝 ⊂ ℓ𝑞 that the inclusion ℓ𝑝
𝜆(Δ)  ⊂ ℓ𝑞

𝜆(Δ) holds. Further, since the 

inclusion ℓ𝑝 ⊂ ℓ𝑞  is strict, there is a sequence 𝑡 = (𝑡𝑘) in ℓ𝑞 but not in ℓ𝑝, i.e., 𝑡 ∈ ℓ𝑞 ∖ ℓ𝑝. Let us now define the sequence 𝑠 =
(𝑠𝑘) in terms of the sequence 𝑡 as follows: 

𝑠𝑘 =
𝜆𝑘𝑡𝑘 − 𝜆𝑘−1𝑡𝑘−1
𝜆𝑘 − 𝜆𝑘−1

;  (𝑘 ∈ ℕ) 

Then, we have for every 𝑛 ∈ ℕ that 

Λ𝑛(𝑠) =
1

𝜆𝑛
∑ 

𝑛

𝑘=0

(𝜆𝑘𝑡 − 𝜆𝑘−1𝑡𝑘−1) = 𝑡𝑛 

which shows that Λ(𝑠) = 𝑡 and hence Λ(𝑠) ∈ ℓ𝑞 ∖ ℓ𝑝. Thus, the sequence 𝑠 is in ℓ𝑞
𝜆 but not in ℓ𝑝

𝜆. Hence, the inclusion ℓ𝑝
𝜆 ⊂ ℓ𝑞

𝜆 is 

strict. This concludes the proof. 

 

Theorem 4.3. The inclusions ℓ𝑝
𝜆(Δ)  ⊂ 𝑐0

𝜆(Δ) ⊂ 𝑐𝜆(Δ) ⊂ ℓ∞
𝜆 (Δ) strictly hold, where 𝑝 > 0. 

Proof. Since the inclusion 𝑐0
𝜆(Δ) ⊂ 𝑐𝜆(Δ) strictly holds, it is enough to show that the inclusions ℓ𝑝

𝜆(Δ) ⊂ 𝑐0
𝜆(Δ) and 𝑐𝜆(Δ) ⊂

ℓ∞
𝜆 (Δ) are strict, where 𝑝 > 0. 

Firstly, it is trivial that the inclusion ℓ𝑝
𝜆(Δ) ⊂ 𝑐0

𝜆(Δ) holds for 𝑝 > 0, since 𝑡 ∈ ℓ𝑝
𝜆(Δ) implies Λ(𝑡) ∈ ℓ𝑝 and hence Λ(𝑡) ∈ 𝑐0 

which means that 𝑡 ∈ 𝑐0
𝜆(Δ). Further, to show that this inclusion is strict, let 𝑝 > 0 and consider the sequence 𝑡 = (𝑡𝑘) defined by 
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𝑡𝑘 =
1

(𝑘 + 1)1/𝑝
;  (𝑘 ∈ ℕ)  

Then 𝑡 ∈ 𝑐0 and hence 𝑡 ∈ 𝑐0
𝜆(Δ), since the inclusion 𝑐0 ⊂ 𝑐0

𝜆(Δ) holds. On the other hand, we have for every 𝑛 ∈ ℕ that 

|Λ𝑛(𝑡)| =
1

𝜆𝑛
∑ 

𝑛

𝑘=0

 
𝜆𝑘 − 𝜆𝑘−1
(𝑘 + 1)1/𝑝

 ≥
1

𝜆𝑛(𝑛 + 1)1/𝑝
∑ 

𝑛

𝑘=0

  (𝜆𝑘 − 𝜆𝑘 − 1)

 =
1

(𝑛 + 1)1/𝑝

 

which shows that Λ(𝑡) ∉ ℓ𝑝 and hence 𝑥 ∉ ℓ𝑝
𝜆(Δ) . Thus, the sequence 𝑥 is in 𝑐0

𝜆(Δ) but not in ℓ𝑝
𝜆(Δ) . Therefore, the inclusion 

ℓ𝑝
𝜆(Δ)  ⊂ 𝑐0

𝜆(Δ) is strict for 0 < 𝑝 < ∞. 

Similarly, it is also clear that the inclusion 𝑐𝜆(Δ) ⊂ ℓ∞
𝜆 (Δ) holds. To show that this inclusion is strict, we define the sequence 𝑠 =

(𝑠𝑘) by 

𝑠𝑘 = (−1)
𝑘 (
𝜆𝑘 + 𝜆𝑘−1
𝜆𝑘 − 𝜆𝑘−1

) ;  (𝑘 ∈ ℕ) 

Then, we have for every 𝑛 ∈ ℕ that 

Λ𝑛(𝑠) =
1

𝜆𝑛
∑ 

𝑛

𝑘=0

(−1)𝑘(𝜆𝑘 + 𝜆𝑘−1) = (−1)𝑛 

which shows that Λ(𝑠) ∈ ℓ∞ ∖ 𝑐. Thus, the sequence 𝑠 is in ℓ∞
𝜆 (Δ) but not in 𝑐𝜆(Δ) and hence 𝑐𝜆 ⊂ ℓ∞

𝜆 (Δ) is a strict inclusion.  

 

Theorem 4.4. The relation ℓ∞ ⊂ ℓ∞
𝜆 (Δ) holds. Further, the equality holds if and only if 𝑆(𝑡) ∈ ℓ∞ for every sequence 𝑥 ∈ ℓ∞

𝜆 (Δ). 
Proof. The first part of the theorem is immediately obtained from Lemma 2.1, and so we turn to the second part. For, suppose 

firstly that the equality ℓ∞
𝜆 (Δ) = ℓ∞ holds. Then, the inclusion ℓ∞

𝜆 (Δ) ⊂ ℓ∞ holds and 𝑆(𝑡) ∈ ℓ∞ for every 𝑡 ∈ ℓ∞
𝜆 . 

Conversely, suppose that 𝑆(𝑡) ∈ ℓ∞ for every 𝑡 ∈ ℓ∞
𝜆 (Δ). Then, the inclusion ℓ∞

𝜆 (Δ) ⊂ ℓ∞ holds. Combining this with the 

inclusion ℓ∞ ⊂ ℓ∞
𝜆 (Δ), we get the equality ℓ∞

𝜆 (Δ) = ℓ∞. This completes the proof. 

 

 

V. The basis for the space 𝓵𝒑
𝝀(𝚫) 

We discuss about the basis of  ℓ𝑝
𝜆(Δ). If a normed space 𝑋 contains a sequence (𝑏𝑛) with the property that for every 𝑡 ∈ 𝑋 there is 

a unique sequence (𝛼𝑛) of scalars such that 

lim
𝑛→∞

 ∥∥𝑡 − (𝛼0𝑏0 + 𝛼1𝑏1 +⋯+ 𝛼𝑛𝑏𝑛)∥∥ = 0 

then (𝑏𝑛) is called a Schauder basis (or briefly basis) for 𝑋. The series ∑𝑘  𝛼𝑘𝑏𝑘 which has the sum 𝑡 is then called the expansion 

of 𝑥 with respect to (𝑏𝑛), and written as 𝑡 = ∑𝑘  𝛼𝑘𝑏𝑘. 

 

Theorem 5.1. Let 1 ≤ 𝑝 < ∞ and define the sequence 𝑒𝜆
(𝑘)
∈ ℓ𝑝

𝜆(Δ) for every fixed 𝑘 ∈ ℕ by 

(𝑒𝜆
(𝑘)
)
𝑛
= {

(−1)𝑛−𝑘
𝜆𝑘

𝜆𝑛 − 𝜆𝑛−1
; (𝑘 ≤ 𝑛 ≤ 𝑘 + 1)

0; ( otherwise )

 (𝑛 ∈ ℕ)  

Then, the sequence (𝑒𝜆
(𝑘)
)
𝑘=0

∞
 is a basis for the space ℓ𝑝

𝜆(Δ) and every 𝑡 ∈ ℓ𝑝
𝜆(Δ) has a unique representation of the form 

𝑡 =∑  

𝑘

 Λ𝑘(𝑡)𝑒𝜆
(𝑘)

 

Proof. Let 1 ≤ 𝑝 < ∞. Then, Λ(𝑒𝜆
(𝑘)
) = 𝑒(𝑘) ∈ ℓ𝑝(𝑘 ∈ ℕ) and hence 𝑒𝜆

(𝑘)
∈ ℓ𝑝

𝜆(Δ)  for all 𝑘 ∈ ℕ. 

Further, let 𝑡 ∈ ℓ𝑝
𝜆(Δ) be given. For every non-negative integer 𝑚, we put 

𝑡(𝑚) =∑  

𝑚

𝑘=0

Λ𝑘(𝑡)𝑒𝜆
(𝑘)

 

Then, we have that 

Λ(𝑡(𝑚)) = ∑  

𝑚

𝑘=0

Λ𝑘(𝑡)Λ(𝑒𝜆
(𝑘)
) = ∑  

𝑚

𝑘=0

Λ𝑘(𝑡)𝑒
(𝑘) 

and hence 

Λ𝑛(𝑡 − 𝑡
(𝑚)) = {

0; (0 ≤ 𝑛 ≤ 𝑚)
Λ𝑛(𝑡); (𝑛 > 𝑚)

 (𝑛,𝑚 ∈ ℕ) 

Now, for any given 𝜖 > 0 there is a non-negative integer 𝑚0 such that 

∑  

∞

𝑛=𝑚0+1

|Λ𝑛(𝑡)|
𝑝 ≤ (

𝜖

2
)
𝑝

 

Therefore, we have for every 𝑚 ≥ 𝑚0 that 
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∥∥𝑥 − 𝑥(𝑚)∥∥ℓ𝑝̂ = ( ∑  

∞

𝑛=𝑚+1

  |Λ𝑛(𝑡)|
𝑝)

1/𝑝

 ≤ ( ∑  

∞

𝑛=𝑚0+1

  |Λ𝑛(𝑡)|
𝑝)

1/𝑝

 ≤
𝜖

2
< 𝜖

 

which shows that lim𝑚→∞  ∥∥𝑡 − 𝑡
(𝑚)∥∥ℓ𝑝𝜆 = 0. 

Finally, of 𝑡 ∈ ℓ𝑝
𝜆(Δ). For this, suppose that 𝑡 = ∑𝑘  𝛼𝑘(𝑥)𝑒𝜆

(𝑘)
. Since the linear transformation 𝑇 defined from ℓ𝑝

𝜆(Δ) to ℓ𝑝, in the 

proof of Theorem 3.3, is continuous, we have 

Λ𝑛(𝑡) = ∑  

𝑘

𝛼𝑘(𝑡)Λ𝑛(𝑒𝜆
(𝑘)
) =∑  

𝑘

𝛼𝑘(𝑡)𝛿𝑛𝑘 = 𝛼𝑛(𝑡);  (𝑛 ∈ ℕ) 

Hence, 𝑡 ∈ ℓ𝑝
𝜆(Δ) is unique. This completes the proof. 
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