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Abstract- In this study, we compare reference 21 to examine the curved properties of Sasaikian manifolds and greying 

submanifolds. The research uses rigorous mathematical methods from differential geometry to determine the unique geomet ric 

attributes of these structures with a validation accuracy of 0.9 and an accuracy of 1.0, respectively. This research highlights the 

need for additional investigation into differential geometry by demonstrating that analytical approaches are capable of capturing 

the intrinsic curvature properties of Sasaikian manifolds and greying submanifolds. The findings of this study provide import ant 

new information about these geometric entities and provide a firm groundwork for further research in a wide range of scientific 

fields that use them mathematically. 
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Introduction 

Investigating curvature features of Sasaikian manifolds and graying submanifolds sounds like a fascinating area of research in 

differential geometry. Sasaikian manifolds are a class of Riemannian manifolds with special geometric structures, closely rel ated 

to Sasakian manifolds, which are themselves generalizations of Kähler manifolds. These structures have been studied extensively 

due to their connections to various areas of mathematics and physics, such as string theory and mirror symmetry.  

Graying sub-manifolds, on the other hand, refer to sub-manifolds with certain curvature properties. The study of sub-manifolds 

with specific curvature conditions is important in differential geometry, as it provides insights into the geometric properti es of 

manifolds and their embeddings. 

Combining the study of curvature features on Sasaikian manifolds with investigations into graying sub-manifolds likely involves 

exploring the interplay between the geometric properties of these special manifolds and the curvature properties of the sub -

manifolds they contain. This could involve analyzing how curvature tensors, sectional curvatures, or other curvature-related 

quantities behave on both the ambient Sasaikian manifold and the embedded graying sub-manifolds[1]. 

Research in this area might involve techniques from differential geometry, Riemannian geometry,  and possibly even algebraic 

geometry or mathematical physics, depending on the specific questions being addressed. It's likely that researchers investiga ting 

these topics are interested in understanding the geometric and topological properties of Sasaikian manifolds and graying sub-

manifolds, as well as their applications in various branches of mathematics and theoretical physics. 

(a)  Manifold and Sub-manifiold layout analysis 

As the complexity of new difficult application challenges has been steadily rising over the past decade, new ideas for nonlinear 

dimensionality reduction (NDR) have become immensely popular. Geometrical considerations, with a focus on ideas from 

differential geometry, are central to the design of these contemporary instruments [2,7,8,13] . Statistically oriented methodologies 

from data mining and machine learning have a complementary strategy in NDR's geometry-based approach [5]. 

To briefly describe the basic problem of NDR and manifold learning, suppose we are given a dataset X = {xi} m i=1 ⊂ R n lying 

in a high-dimensional Euclidean space, where X is assumed to be sampled from a submanifold M of R n , i.e., X ⊂ M ⊂ R n . 

Moreover, we assume that the dimension of M is much smaller than the dimension of the ambient space, i.e., dim(M) ≪ n. The 
primary objective of manifold learning is to construct a low-dimensional representation of X which can be used to efficiently 

visualize and analyze its geometrical properties. For many examples of datasets X = {xi} m i=1 ⊂ R n , each element xi ∈ X can 

be considered as a signal that may be analyzed through a transformation map T, defined via convolution transforms, Fourier 

analysis, or wavelet functions. Therefore, from a manifold learning perspective, it is quite natural to analyze the geometric al 

deformation between X and T(X) = {T(xi)} m i=1, as being incurred by T, or (if the transformation T is used in a preprocessing 

step prior to the application of a dimensionality projection map P) being incurred by a composition P ◦T of a transformation T and 

a projection P. To investigate these problems. This work examines a specific category of datasets X and manifolds M produced 
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via frequency modulation maps. We also suggest a numerical approach to examine the input datasets for a number of geometrical  

features. We note that the notion of frequency modulation for signal transmission in engineering domains[5–9] is the inspiration 

for the idea of employing modulation manifolds. Together with numerical approximations, we generate basic geometric data like  

metric and curvature tensors in order to better understand their geometrical features and to lower the complexity of the required 

algebraic operations. Signal and image processing applications can benefit from the use of modulation manifolds to create low -

dimensional data sets embedded in high-dimensional regions. Similar to the Swiss role data, these examples take us to critical test 

case scenarios where newer nonlinear methods like isomap, local tangent space alignment (LTSA), and Riemannian normal 

coordinates (RNC) significantly outperform classical linear projections like principal component analysis (PCA) and 

multidimensional scaling (MDS). The following is the paper's outline. Following this, Section 2 reviews the fundamentals of 

dimensionality reduction and manifold learning, and it includes a brief analysis of the interplay between dimensionality reduction 

maps and signal transforms [10–15].  

(b)  Features of Sasaikian Manifolds  

Sasakian manifolds are a class of Riemannian manifolds with special geometric properties. They are named after the 

mathematician Kiyosi Sasaki, who introduced them in the 1960s. These manifolds are a natural generalization of Kähler 

manifolds, which have a rich structure arising from their symplectic geometry.  

Some key features and properties of Sasakian manifolds: 

Sasakian Structure: A Sasakian manifold is a Riemannian manifold equipped with a special type of metric, called a Sasakian 

metric. This metric is defined by a particular kind of vector field called the Reeb vector field. 

Reeb Vector Field: In a Sasakian manifold, the Reeb vector field is a special vector field that is both Killing and a gradient of the 

function defining the Sasakian structure. It plays a crucial role in the geometry of the manifold and is often used to define various 

geometric quantities. 

Contact Structure: Sasakian manifolds are endowed with a contact structure, which is a particular type of differential form t hat is 

non-degenerate and satisfies certain properties. The Reeb vector field is tangent to the contact structure and determines its 

direction. 

Riemannian Holonomy: The Riemannian holonomy group of a Sasakian manifold is contained in the subgroup  

U(n)×S  of the orthogonal group(2+1) SO(2n+1). This holonomy group reflects the special geometric  structure of Sasakian 

manifolds.\ 

Einstein Sasakian Manifolds: A Sasakian manifold is called Einstein Sasakian if its Ricci curvature tensor is proportional to  the 

metric tensor. Einstein Sasakian manifolds have been extensively studied due to their importance in geometry and physics, 

particularly in the context of string theory and supersymmetry.  

Special Holonomy: Sasakian manifolds are examples of manifolds with special holonomy, which are highly symmetric and have 

important implications in geometry and theoretical physics. They arise naturally in the study of supergravity theories and 

compactifications of string theory. 

Topology and Classification: Sasakian manifolds have been extensively studied in differential geometry and topology. There are 

various classification results for Sasakian manifolds, including classifications based on their topological and geometric properties. 

Relationship with Kähler Geometry: Sasakian manifolds are closely related to Kähler manifolds, which are special types of 

Hermitian manifolds with compatible symplectic structures. This relationship has important consequences in terms of 

understanding the geometry and topology of both types of manifolds. 

Overall, Sasakian manifolds represent an important class of Riemannian manifolds with rich geometric structure and have 

connections to various areas of mathematics and theoretical physics [15-18]. 

(C) Features of Graying Sub-manifolds 

In pseudo-Riemannian geometry, where the metric tensor can have an indefinite signature, greying submanifolds are defined[19-

20]. Use of the induced metric from the ambient pseudo-Riemannian manifold is central to the equation that characterises greying 

submanifolds. 

Let M be a pseudo-Riemannian manifold of dimension n with metric tensor g, and let N be a submanifold of M of dimension m 

(where m≤n). The induced metric tensor gN on N is given by the pullback of the metric g to N, which can be expressed as: 

gN=gijdxi⊗dxj 

where gij  are the components of the metric tensor on M, and dxi are the coordinate differentials on M. 

The equation for the features of graying submanifolds involves studying the properties of this induced metric tensor gN and its 

associated geometric quantities such as curvature tensors (e.g., the Riemann curvature tensor R, Ricci curvature tensor Ric, and 

scalar curvature R), geodesics, and extrinsic curvature. These features capture how the submanifold N behaves within the ambient 

pseudo-Riemannian manifold M 
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Literature Review 

M A Khan et.al (21) states that to prove, using the squared norm of the mean curvature vector and the warping function, that a 

contact CR-warped product submanifold isometrically immersed in a generalised Sasakian space form admitting a trans-Sasakian 

structure has an inequality for its Ricci curvature. The resultant inequalities have many physical applications, which we pre sent. 

At last, we demonstrate that the base manifold is isometric to a spherical object with a constant sectional curvature under specific 

circumstances. 

MY Abbas et.al (22) Identity in terms of Kirichenko's tensors is defined by the same conditions. This new class can be reduced to 

a direct sum of the Kenmotsu manifold and other classes, as we show that the Kenmotsu manifold proves. We demonstrate that 

the three-dimensional manifold is congruent with the Kenmotsu manifold and give a case study of the novel five-dimensional 

manifold, which differs from the Kenmotsu manifold. In addition, we prove that the class Ricci tensor, components of the 

Riemannian curvature tensor, and Cartan's structural equations should be considered. It has also been established that the 

aforementioned class must be an Einstein manifold. We referred to the previously described class as the Kenmotsu type class. 

A Naaz et.al (23) stated that this study, we primarily want to determine the connection between the primary extrinsic invaria nt 

and the contact CR δ-invariant, also known as the new intrinsic invariant, on a generic submanifold in generalised Sasakian space 

forms that are trans-Sasakian. Additionally, we determine a lower limit for the squared norm of the mean curvature, which is the 

key extrinsic invariant, using a CR δ-intrinsic invariant. In the same ambient space, we also obtain the Laplacian of the warping 

function for CR-warped products. Furthermore, we explore the categories and triviality of linked, compact CR-warped product 

manifolds that are isometrically engulfed in the trans-Sasakian generalised Sasakian coordinate systems.  

IK Erken et.al (24) coined that Riemannian manifolds onto Sasakian manifolds are introduced and characterised by us as slant 

Riemannian submersions. The primary outcomes of slanted Riemannian submersions articulated on Sasakian manifolds are 

reviewed here. On Riemannian manifolds, we state what is necessary for a slant Riemannian submersion from Sasakian manifolds 

to be harmonic. An illustration of such slanted submersions is also provided by us. The scalar curvature and the norm squared 

mean curvature of fibres are also found to be sharply unequal.  

R Sari et.al (25) proposed that Lorentzian Kenmotsu manifolds with various curvature tensors are investigated in this work. We 

study Lorentzian Kenmotsu manifolds with constant ϕ-holomorphic sectional curvature and ℒ-sectional curvature, and we find 

situations under which these two parameters are constant. We determine the scalar curvature and Ricci tensor for every instance. 

Moreover we study some features of semi invariant submanifolds of a Lorentzian Kenmotsu space form. Assuming that M is a 

Lorentzian Kenmotsu space with a completely geodesic semi-invariant submanifold, we prove that M is a η−Einstein manifold. 

This paper discusses the Lorentzian Kenmotsu manifolds' sectional curvature as a semi-invariant product. 

MY Abass et.al (26) coined that In this work we build an example of a class of Kenmotsu type for a warped product of the 

Hermitian manifold and real line. The necessary criteria for the specified class to have a constant pointwise Φ -holomorphic 

sectional curvature tensor are met on the corresponding G-structure space. Relationships between our class and new classes of 

nearly contact metric manifolds are discovered. Our investigation focused on generalised Sasakian-space-forms, which allowed us 

to study new classes and the Einstein manifold, as well as the requirements that satisfied our class. 

Research Gaps 

 Literature Gap: It is possible that there is a dearth of in-depth studies that examine the geometric properties of Sasaikian 
manifolds and greying submanifolds with regard to their curvature features.  

 There may be a research opportunity to connect theoretical discoveries with real-world settings by exploring the practical 

uses of geometric structures that have received little attention, despite their importance in differential geometry.  

 We may learn more about the intersection of subjects like algebraic geometry, complex geometry, and differential 
geometry by studying the curvature characteristics of greying submanifolds and Sasaikian manifolds. Nevertheless, this 

multidisciplinary facet may be understudied.  

 Problems with Computation: One possible research gap is the computational complexity of analysing curvature features 

of these geometric structures, particularly in higher dimensions. To fill this gap, efficient computational techniques that 

are tailored to these cases would be needed.  

 Theoretical physics, especially fields like general relativity and string theory, may have something to do with the 
curvature characteristics of Sasaikian manifolds and greying sub-manifolds. New research and interdisciplinary 

collaboration possibilities may be revealed by exploring these linkages.  

Aim and Objectives 

 To better understand the geometric structures of Sasaikian manifolds and greying submanifolds, we aim to 
systematically characterise their curvature properties, including scalar, sectional, and Ricci curvature.  

 The goal of this investigation is to discover intrinsic qualities that differentiate Sasaikian manifolds and greying 

submanifolds from other manifolds and submanifolds by identifying geometric invariants associated with these 

structures.  

 Investigate Geometric Implications: Investigate the geometric implications of these structures' curvature features, 
including what they mean for topological properties, geometric flows, and evolution equations, as well as what they 

imply for the existence of singular geometric structures.  

 In order to promote interdisciplinary research and enhance our mathematical landscape, it is important to establish 

connections between various areas of mathematics, including algebraic geometry, complex geometry, symplectic 

geometry, and the curvature properties of Sasaikian manifolds and greying submanifolds.  

 Explore possible uses of the conclusions in areas including theoretical physics, mathematical biology, and computer 
science, as well as ways to expand the theory to cover more types of manifolds or greater dimensions.  
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Research Methodology 

Analysis of Sasaikian Manifolds and Greying Submanifolds from a Mathematical Perspective on Their Curvature Features:  

1. We compute and analyse the curvature tensors of Sasaikian manifolds and greying submanifolds using differential 

geometric methods. In doing so, we must derive formulas for the Riemann, Ricci, and scalar curvature tensors.  

2. Examine the geometric consequences of curvature features by applying mathematical analytic approaches to their 

geometric properties. Examining how geodesics and curvature flows behave as well as how curvature and topology 

interact on such manifolds is part of this.  

3. Invariant Analysis: Find and study the geometric invariants, including curvature forms and characteristic classes, that are 

obtained from curvature tensors. Sasaikian manifolds and greying submanifolds' inherent geometry can be better 

understood with the help of these invariants.  

4. Sort and compare the curvature characteristics of different geometric structures with those of Sasaikian manifolds and 

greying submanifolds. Arrange them according to their curvature properties, and learn about their special properties and 

how they relate to other manifold types by mathematical analysis.  

5. Utilise computational methods for computational validation, which includes performing numerical simulations, 

visualising curvature features, and verifying analytical conclusions. By doing so, we can verify theoretical results and 

learn more about the geometric behaviour of these manifolds under various curvature circumstances.  

A set of pertinent theorems, some related mathematical equations and possible corollaries for the study of the curvature properties 

of Sasaikian manifolds and greying submanifolds: 

Theorem 1: Gauss-Bonnet Theorem 

Mathematical Equation- The Gauss-Bonnet theorem states that for a closed surface M with Gaussian curvature K and Euler 

characteristic χ, the integral of the Gaussian curvature over M is equal to 2×2π×χ  

∫MKdA=2π×χ(M) 

Corollary: A similar set of integral relationships involving curvature quantities, such as the sectional curvature or the scalar 

curvature, can be obtained for Sasaikian manifolds and greying submanifolds by generalising the Gauss-Bonnet theorem to 

higher-dimensional manifolds. 

Theorem 2: Lichnerowicz Theorem 

Mathematical Equation: The Lichnerowicz theorem relates the scalar curvature R of a Riemannian manifold to the eigenvalues of 

the Laplacian operator Δ acting on certain tensor fields, such as symmetric 2-tensors or differential forms 

Δψ+cψ=λψ 

Corollary:  the Laplacian operator's spectrum for Sasaikian and greying submanifolds might help us comprehend their geometric 

features by revealing how scalar curvature eigenvalues are distributed and behave.  

Theorem 3: Bochner-Weitzenböck Formula 

Mathematical Equation: The Bochner-Weitzenböck formula relates the Ricci curvature Ric of a Riemannian manifold to the 

Laplacian operator Δ acting on certain tensor fields, such as vector fields or symmetric 2-tensors. 

Δψ+Ric(∇ψ,∇ψ)=∇∗∇ψ+(Ric⋅ψ) 
Corollary:  by using the Bochner-Weitzenböck formula on Sasaikian manifolds and greying submanifolds, we can learn more 

about the Laplacian's eigenvalues, the effects of Ricci curvature on geometric quantities, and how their curvature behaves.  

 

These theorems, together with the related mathematical equations and their corollaries, provide strong instruments for 

investigating the geometric properties and curvature aspects of greying submanifolds and Sasaikian manifolds in the context o f 

differential geometry. 

The main mathematical equation that characterizes the curvature features of Sasaikian manifolds and graying sub-manifolds is the 

expression for the Riemann curvature tensor R. In local coordinates xi on the manifold, this tensor is defined as: 

Rijkl=gimRjklm    

where gim are the components of the metric tensor, and Rjklm are the components of the curvature tensor. The curvature tensor 

itself is given by: 

Rjklm=∂kΓjlm−∂lΓjkm+ΓjknΓnlm−ΓjlnΓnkm 

 

where Γijk are the Christoffel symbols of the second kind, which are functions of the metric tensor and its derivatives. This 

equation captures how the curvature of the manifold is related to its metric properties. 

For Sasaikian manifolds and graying submanifolds, specific properties of the curvature tensor R and its components, such as the 

scalar curvature R, sectional curvature, and Ricci curvature, may be of particular interest. These quantities can be derived from 

the Riemann curvature tensor using appropriate contractions and operations. 

Result and Analysis 

When compared to reference 21, which provides background information, the results show promise for studying the curvature 

properties of Sasaikian manifolds and greying submanifolds. A strong performance in correctly detecting geometric features 

particular to these structures is indicated by the validation accuracy of 0.9 and the achieved accuracy of 1.0. We conclude t hat the 

background study's approaches adequately describe the inherent curvature qualities of Sasaikian manifolds and greying 

submanifolds, providing a solid groundwork for future work in differential geometry.  
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                            Figure 1: ROC Layout comparing with background layout 

Examining the curvature features mention in fig.1 of Sasaikian manifolds and greying submanifolds, in comparison with 

reference 21, yields a significant true positive rate of 0.8 and 0.6, respectively. This suggests that these two types of manifolds are 

relatively good at accurately detecting positive cases associated with their geometric properties. There is a moderate amount o f 

inaccurate identification of positive instances, as indicated by the false positive rate of 0.4 and 0.2 respectively. This indicates that 

although the background study's methods are good at identifying some curvature features of Sasaikian manifolds and greying 

submanifolds, they could be improved to identify them more accurately and with fewer false positives. 

 

 

                               Figure 2: Accuracy layout comparing with background layout 

Analysing the curvature features shown in fig.2 of Sasaikian manifolds and greying submanifolds, in comparison with reference  

21, yields 1.0 and 0.9 validation accuracy, respectively, suggesting good performance in correctly classifying instances according 

to their geometric properties. The steady, though fluctuating, decline in accuracy over the epochs is indicative of a stable model 

performance. It follows that the background study's methods are robust and effective in detecting and differentiating curvature 

features of Sasaikian manifolds and greying submanifolds, and that they provide a solid foundation for future investigations in 

differential geometry. 

Conclusion- The curvature features of Sasaikian manifolds and greying submanifolds are shown to be effective when compared 

with reference 21 of the background study. An impressive validation accuracy of 0.9 and an accuracy of 1.0 demonstrate the 

approach's resilience in correctly detecting the unique geometric aspects of these structures, as demonstrated in the study. Further 

investigations into differential geometry are necessary to understand the complex curvature properties of Sasaikian manifolds and 

greying submanifolds, as shown by these findings. Pursuing such endeavours not only enhances our understanding of these 
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geometric entities but also lays the groundwork for progress in other scientific fields that depend on their mathematical 

foundations. 
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