ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

b₂ - Metric Space and Some Fixed Point Results

Varsha D. Borgaonkar

P.G. Department of Mathematics, N.E.S. Science College, Nanded, India

Abstract: In this paper, we have used the concept of b_2 - metric space. We aim to obtain the common coincidence and common fixed-point theorems for two mappings on in b_2 - metric spaces. The concept of 2 - metric space was introduced by Gahler. Many fixed-point results were also obtained for mappings defined on these spaces. Later Mustafa gave the new concept of b_2 - metric spaces which are the generalization of both b-metric space and 2 - metric space. Some Fixed-point results for the mappings satisfying the contractive type conditions are obtained on the $\boldsymbol{b_2}$ - metric spaces.

Keywords: Fixed Point, b_2 - Metric Space, Convergence in b_2 - Metric Space, Cauchy Sequence.

I. INTRODUCTION

The Banach fixed point theorem is very popular and useful theorem in Mathematics as well as in other subjects. In 1989, Bakhtin [1] introduced the concept of generalized b-metric spaces. Boriceanu [2], and Mehmat Kir [3] extended the fixed point theorem in b-metric space. Borkar [4] obtained the common fixed point theorem for non-expansive type mapping. Czerwik [5-6] presented the generalization of the Banach fixed point theorem in b-metric spaces. Using this idea, many researchers presented a generalization of the renowned Banach fixed point theorem in b-metric space. Agrawal [7] presented the existence and uniqueness theorem in bmetric Space. Chopade [8] gave common fixed point theorems for contractive type mapping in metric space. Borgaonkar V. D. and K. L. Bondar [9-10] have obtained the fixed point theorems in b -metric spaces. Roshan [11] obtained a common fixed point of four maps in b-Metric space. Suzuki [12] obtained some basic inequalities and it's applications in a b - metric space. In this paper, we will obtain the fixed point theorem for a pair of mappings in b - metric space.

The notion of a 2-metric was introduced by Gähler in [14], having the area of a triangle in \mathbb{R}^2 as the inspirative example. Similarly, several fixed-point results were obtained for mappings in such spaces. Note that, unlike many other generalizations of metric spaces introduced recently, 2-metric spaces are not topologically equivalent to metric spaces and there is no easy relationship between the results obtained in 2-metric and in metric spaces. A generalization of both 2-metric space and b-metric space is introduced as a b₂metric space by Zead Mustafa [15] in 2014.

In this paper, we prove some fixed-point theorems under various contractive conditions in b_2 -metric spaces.

II. SOME BASIC DEFINITIONS AND PRELIMINARIES

Definition 1.1: Let X be a nonempty set and let $d: X^3 \to R$ be a map satisfying the following conditions:

- 1. For every pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
- If at least two of the three points x, y, z are same then d(x, y, z) = 0.
- 3. Symmetry: d(x, y, z) = d(x, z, y) = d(y, z, x) = d(y, x, z) = d(z, y, x) = d(z, x, y).
- Rectangular Inequality: $d(x, y, z) \le d(x, y, a) + d(y, z, a) + d(x, z, a)$

Then d is called as a 2-Metric on X and (X, d) is called as a 2-Metric space.

Example 1.1: Let $X \times X \times X \to R$ be defined by,

$$d(x, y, z) = min\{|x - y|, |y - z|, |z - x|\}$$

Clearly *d* is a 2-metric on *X*.

Definition 1.2: Let X be a non-empty set and $s \ge 1$ then $d: X^3 \to R$ satisfying following conditions:

- 1. For every pair of distinct point $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
- 2. If at least two of the three points x, y, z are same then d(x, y, z) = 0.
- 3. Symmetry: d(x, y, z) = d(x, z, y) = d(y, z, x) = d(y, x, z) = d(z, y, x) = d(z, x, y).
- Rectangular Inequality: $d(x, y, z) \le s\{d(x, y, a) + d(y, z, a) + d(x, z, a)\}$

Then d is called as a b_2 -metric on X and (X, d, s) is called as a b_2 -metric space.

Definition 1.3: Let $\{x_n\}$ be a sequence in a b_2 -metric space (X, d). Then

- 1. $\{x_n\}$ is said to be b_2 -convergent to $x \in X$, written as $\lim x_n = x$, if for all $a \in X$, $\lim d(x_n, x, a) = 0$.
- 2. $\{x_n\}$ is said to be b_2 Cauchy sequence in X if for all $\lim_{n \to \infty} d(x_n, x_m, a) = 0$.
- 3. (X, d) us said to be b_2 -complete if every b_2 Cauchy sequence is a b_2 -convergent.

Example 1.2: Let $X = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$ and the mapping $d_1 = X \times X \times X \to R$ be defined by,

$$d_1(x, y, z) = \begin{cases} (xy + yz + zx)^2 & \text{if } x \neq y \neq z \\ 0 & \text{otherwise} \end{cases}$$

clearly, d_1 is a b_2 -metric on X and (X, d_1, s) is a b_2 -metric space.

Example 1.3: Let $X = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$ and the mapping $d_1 = X \times X \times X \to R$ be defined by, $d_2(x, y, z) = (x - y)^2(y - y)^2($ $(z)^2(z-x)^2$ clearly, d_2 is a b_2 -metric on $(X, (X, d_2, s))$ is a b_2 -metric space.

III. MAIN RESULT

Theorem 3.1: Let (X, d, s) be a Complete b_2 -metric space with $s \ge 1$ $P, Q: X \to X$ be a self-maps on X, such that, $d(Px,Qy,a) \le \alpha[d(Px,y,a) + d(x,Qy,a)] + \beta[d(Px,x,a) + d(Qy,y,a)]$ holds for $\forall x, y, a \in X$. Where, $0 < \alpha < \frac{1}{s}$ and $0 < \beta < \frac{1}{s}$, such that, $\alpha + \beta < \frac{1}{2s}$. Then, P and Q have a unique common fixed point in X.

Proof:

Let $x_0 \in X$ be an arbitrary element of X. We define a sequence $\{x_n\}$ of distinct points in X as, $\forall n = 0, 1, 2$ and $x_{2n+1} = Px_{2n}$ $x_{2n+2} = Qx_{2n+1}$ (3.2) we claim that $\{x_n\}$ is Cauchy's sequence.

Now, we will prove that, $d(x_n, x_{n+1}, x_{n+2}) = 0$ $\forall n \in \mathbb{N}$.

Firstly, we will prove that $d(x_{2n}, x_{2n+1}, x_{2n+2}) = 0$

Suppose $d(x_{2n}, x_{2n+1}, x_{2n+2}) > 0 \quad \forall n \in \mathbb{N}$

$$\dot{d}(x_{2n}, x_{2n+1}, x_{2n+2}) = d(x_{2n+2}, x_{2n+1}, x_{2n})$$

$$d(Qx_{2n+1}, Px_{2n}, x_{2n}) = d(Px_{2n}, Qx_{2n+1}, x_{2n})$$

$$\leq \alpha \left[d(x_{2n+1}, x_{2n+1}, x_{2n}) + d(x_{2n}, x_{2n+2}, x_{2n})\right] + \beta \left[d(x_{2n+1}, x_{2n}, x_{2n}) + d(x_{2n+2}, x_{2n+1}, x_{2n})\right]$$

- $\therefore d(x_{2n}, x_{2n+1}, x_{2n+2}) \le \beta. d(x_{2n+2}, x_{2n+1}, x_{2n})$
- $\therefore d(x_{2n}, x_{2n+1}, x_{2n+2}) < d(x_{2n+2}, x_{2n+1}, x_{2n})$

This is not possible.

∴ we have
$$d(x_{2n}, x_{2n+1}, x_{2n+2}) = 0 \quad \forall n \in \mathbb{N}$$
(3.3)

Now, we will show that $d(x_{2n+1}, x_{2n+2}, x_{2n+3}) = 0 \quad \forall \ n \in \mathbb{N}$.

Suppose, $d(x_{2n+1}, x_{2n+2}, x_{2n+3}) > 0$ i. e. $d(x_{2n+1}, x_{2n+2}, x_{2n+3}) > 0$.

$$\begin{aligned} &d(x_{2n+1},x_{2n+2},x_{2n+3}) = d(x_{2n+3},x_{2n+2},x_{2n+1}) = d(Px_{2n+2},Qx_{2n+1},x_{2n+1}) \\ &\leq \alpha [d(Px_{2n+2},x_{2n+1},x_{2n+1}) + d(x_{2n+2},Qx_{2n+1},x_{2n+1})] + \beta [d(Px_{2n+2},x_{2n+2},x_{2n+2}) + d(Qx_{2n+1},x_{2n+1},x_{2n+1})] \end{aligned}$$

$$\leq \alpha [d(Px_{2n+2}, x_{2n+1}, x_{2n+1}) + d(x_{2n+2}, x_{2n+2}, x_{2n+1})] + \beta [d(x_{2n+3}, x_{2n+2}, x_{2n+1}) + d(x_{2n+2}, x_{2n+1}, x_{2n+1})]$$

 $d(x_{2n+1}, x_{2n+2}, x_{2n+3}) \le \beta d(x_{2n+1}, x_{2n+2}, x_{2n+3}) < d(x_{2n+1}, x_{2n+2}, x_{2n+3})$

This is not possible.

: we have,
$$d(x_{2n+1}, x_{2n+2}, x_{2n+3}) = 0 \quad \forall n \in \mathbb{N}$$
(3.4)

In general, we have, $d(x_n, x_{n+1}, x_{n+2}) = 0 \quad \forall n \in \mathbb{N}$ (3.5)

Now we will prove that, $\{x_n\}$ is Cauchy's sequence in X.

Consider, for $x_{2n+1} \neq a$ and $x_{2n} \neq a$,

$$d(x_{2n+1}, x_{2n}, a) = d(Px_{2n}, Qx_{2n-1}, a)$$

$$\leq \alpha [d(Px_{2n}, x_{2n-1}, a) + d(x_{2n}, Qx_{2n-1}, a)] + \beta [d(Px_{2n}, x_{2n}, a) + d(Qx_{2n-1}, x_{2n-1}, a)]$$

$$\leq \alpha[d(x_{2n+1},x_{2n-1},a)+d(x_{2n},x_{2n},a)]+\beta[d(x_{2n+1},x_{2n},a)+d(x_{2n},x_{2n-1},a)]$$

$$\leq \alpha[sd(x_{2n+1},x_{2n},a)+sd(x_{2n},x_{2n-1},a)+sd(x_{2n},x_{2n-1},x_{2n+1})]+\beta[d(x_{2n+1},x_{2n},a)+d(x_{2n},x_{2n-1},a)]$$

Now, (3.5) gives,

$$\begin{aligned} &d(x_{2n+1},x_{2n},a) \leq \alpha[sd(x_{2n+1},x_{2n},a) + sd(x_{2n},x_{2n-1},a)] + \beta[d(x_{2n+1},x_{2n},a) + d(x_{2n},x_{2n-1},a)] \\ &\leq (\alpha s + \beta) \ d(x_{2n+1},x_{2n},a) + (\alpha s + \beta) \ d(x_{2n},x_{2n-1},a)(1 - \alpha s - \beta) \ d(x_{2n+1},x_{2n},a) \\ &\leq (\alpha s + \beta) \ d(x_{2n},x_{2n-1},a) \end{aligned}$$

$$d(x_{2n+1},x_{2n},a) \leq \left[\frac{\alpha s + \beta}{1 - \alpha s - \beta}\right] d(x_{2n},x_{2n-1},a)$$

 $d(x_{2n+1}, x_{2n}, a) \le r. d(x_{2n}, x_{2n-1}, a).$

Where, $r = \left[\frac{\alpha s + \beta}{1 - \alpha s - \beta}\right] < 1$.

By continuing we get, $\forall a \neq x_{n+2}$, $a \neq x_{n+1}$

 $d(x_{2n+1},x_{2n},a) < r.\,d(x_{2n},x_{2n-1},a) < r^2.\,d(x_{2n-1},x_{2n-2},a) < \cdots < r^{2n}.\,d(x_1,x_0,a).$

In general, we have, $d(x_{n+2}, x_{n+1}, a) < r^{n+1} \cdot d(x_1, x_0, a)$.

Hence, we have,

Therefore, by definition, for every $\epsilon > 0$, there exists a positive integer N_1 such that,

$$d(x_{n+1}, x_n, a) < \frac{\epsilon}{3s} \quad \forall \ n \in N_1$$
(3.7)

Now we will prove that $\{x_n\}$ is Cauchy's sequence in X. i.e., for every $\epsilon > 0$, there exists a positive number N_0 such that,

$$d(x_m, x_n, a) < \epsilon \qquad \forall m > n \ge N_0 \qquad \dots \dots \dots (3.8)$$

We will prove (3.8) by using the method of induction.

Case-I If m = n + 1, then by (3.7), we get,

$$d(x_m, x_n, a) = d(x_{n+1}, x_n, a) < \frac{\epsilon}{3s} \quad \forall \ n \in \mathbb{N}$$

Hence, equation (3.8) holds for m = n + 1

Case-II Now we will prove that (3.8) holds for m = m'. Then we have,

$$d(x_n, x_{m'}, a) < \frac{\epsilon}{3s} \quad \forall m > n \ge N_2$$
(3.9)

Case-III Now we will prove that (3.8) holds for m = m' + 1.

Consider,

$$d(x_n, x_{m'+1}, a) \le sd(x_n, x_{m'}, a) + sd(x_{m'}, x_{m'+1}, a) + sd(x_n, x_{m'}, x_{m'+1})$$

By (3.7) and (3.9) we have,

$$d(x_n, x_{m'+1}, a) < s. \left[\frac{\epsilon}{3s} + \frac{\epsilon}{3s} + \frac{\epsilon}{3s} \right] \quad \forall m' > n \ge N_2$$

Thus, by the principle of induction, (3.8) holds for all m > n.

Therefore $\{x_n\}$ is Cauchy's sequence in X.

As X is complete $\{x_n\}$ is a convergent sequence in X.

Suppose,
$$\lim_{n \to \infty} x_n = x^*$$
, $x^* \in X$. Hence, $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = x^*$ (3.10)

Now we will prove that x^* is fixed point of both P and Q i.e. we claim that, $Px^* = Qx^* = x^*$.

If possible, suppose that, $Px^* \neq x^*$.

Thus, $\forall a \neq Px^*$ and $a \neq x^*$ we have $d(Px^*, x^*, a) \neq 0$.

$$\therefore d(Px^*, x^*, a) > 0.$$

Consider $\forall a \neq Px^*$ and $a \neq x^*$,

$$d(Px^*, x^*, a)$$

$$\leq sd(Px^*, x_{2n}, a) + sd(x_{2n}, x^*, a) + sd(Px^*, x^*, x_{2n})$$

$$\leq sd(Px^*, Qx_{2n-1}, a) + sd(x_{2n}, x^*, a) + sd(Px^*, x^*, x_{2n})$$

$$\leq s\{\alpha[d(Px^*,x_{2n-1},a)+d(x^*,Qx_{2n-1},a)]+\beta[d(Px^*,x^*,a)+d(Qx_{2n-1},x_{2n-1},a)]\}+sd(x_{2n},x^*,a)+sd(Px^*,x^*,x_{2n})+sd(x_{2n},x^*,a)$$

$$\leq s\{\alpha[d(Px^*, x_{2n-1}, a) + d(x^*, Qx_{2n-1}, a)] + \beta[d(Px^*, x^*, a) + d(x_{2n}, x_{2n-1}, a)]\} + sd(x_{2n}, x^*, a) + sd(Px^*, x^*, x_{2n})$$

$$\leq s\{\alpha[d(Px^*,x_{2n-1},a)+d(x^*,x_{2n},a)]+\beta[d(Px^*,x^*,a)+d(x_{2n},x_{2n-1},a)]\}+sd(x_{2n},x^*,a)+sd(Px^*,x^*,x_{2n})$$

Letting lim on both sides then we get,

$$\lim_{n \to \infty} d(Px^*, x^*, a) \le \lim_{n \to \infty} s. \{ \alpha [d(Px^*, x_{2n-1}, a) + d(x^*, x_{2n}, a)] + \beta [d(Px^*, x^*, a) + d(x_{2n}, x_{2n-1}, a)] \} + \lim_{n \to \infty} s. d(x_{2n}, x^*, a) + \lim_{n \to \infty} s. d(Px^*, x^*, x_{2n})$$

```
Thus, (3.6) and (3.10) gives,
d(Px^*, x^*, a) \le s. \{\alpha[d(Px^*, x^*, a) + d(x^*, x^*, a)] + \beta[d(Px^*, x^*, a)]\} + s. d(x^*, x^*, a) + s. d(Px^*, x^*, x^*)
d(Px^*, x^*, a) \le s.\{\alpha[d(Px^*, x^*, a)] + \beta[d(Px^*, x^*, a)]\}
d(Px^*, x^*, a) \le (\alpha + \beta)s. d(Px^*, x^*, a)
d(Px^*, x^*, a) < \frac{1}{2}d(Px^*, x^*, a)
This is a contradiction since d(Px^*, x^*, a) > 0.
Therefore, we have,
Px^* = x^*
Therefore, x^* is fixed point of P.
Now. we show that, x^* is fixed point of Q i. e. d(Qx^*, x^*, a) = 0.
Suppose, \forall a \neq Qx^* and a \neq x^* d(Qx^*, x^*, a) > 0.
Consider \forall a \neq Qx^* and a \neq x^*,
d(Qx^*, x^*, a)
\leq sd(Qx^*, x_{2n+1}, a) + sd(x_{2n+1}, x^*, a) + sd(Qx^*, x^*, x_{2n+1})
\leq sd(Qx^*, Px_{2n}, a) + sd(x_{2n+1}, x^*, a) + sd(Qx^*, x^*, x_{2n+1})
\leq sd(Px_{2n},Qx^*,a) + sd(x_{2n+1},x^*,a) + sd(Qx^*,x^*,x_{2n+1})
\leq s \left[ \alpha [d(Px_{2n}, x^*, a) + d(x_{2n}, Qx^*, a)] + \beta [d(Px_{2n}, x_{2n}, a) + d(Qx^*, x^*, a)] \right] + s d(x_{2n+1}, x^*, a) + s d(Qx^*, x^*, x_{2n+1})
\leq s \left[ \alpha \left[ d(x_{2n+1}, x^*, a) + d(x_{2n}, Qx^*, a) \right] + \beta \left[ d(x_{2n+1}, x_{2n}, a) + d(Qx^*, x^*, a) \right] \right] + s d(x_{2n+1}, x^*, a) + s d(Qx^*, x^*, x_{2n+1})
Letting lim on both sides then we get,
\lim_{n\to\infty} d(Qx^*, x^*, a) \le \lim_{n\to\infty} s \left[ \alpha \left[ d(x_{2n+1}, x^*, a) + d(x_{2n}, Qx^*, a) \right] + \beta \left[ d(x_{2n+1}, x_{2n}, a) + d(Qx^*, x^*, a) \right] \right]
                           +\lim_{n\to\infty} sd(x_{2n+1},x^*,a) + \lim_{n\to\infty} sd(Qx^*,x^*,x_{2n+1})
Thus, (3.6) and (3.10) gives,
d(Qx^*, x^*, a)
\leq s[\alpha[d(x^*, x^*, a) + d(x^*, Qx^*, a)] + \beta \cdot d(Qx^*, x^*, a)] + \frac{sd(x^*, x^*, a) + sd(Qx^*, x^*, x^*)}{sd(x^*, x^*, a)}
\leq s[\alpha[d(x^*,Qx^*,a)] + \beta.d(Qx^*,x^*,a)]
d(Qx^*, x^*, a) \le (\alpha + \beta)s. d(Qx^*, x^*, a)
d(Qx^*,x^*,a) < \frac{1}{2}d(Qx^*,x^*,a)
This is a contradiction since d(Qx^*, x^*, a) > 0.
Therefore, we have,
Qx^* = x^*.
Therefore, x^* is fixed point of Q.
Hence, we have, Px^* = Qx^* = x^* x^* is common fixed point of P and Q.
Now we will prove that x^* is a unique common fixed point of P and Q.
Suppose y^* is another common fixed point of P and Q.
\therefore Py^* = Qy^* = y^*
Now, we will prove that, x^* = y^*.
Suppose x^* \neq y^*
Therefore, \forall a \neq x^* and a \neq y^* we have d(x^*, y^*, a) \neq 0
Suppose d(x^*, y^*, a) > 0.
Consider, \forall a \neq x^* and a \neq y^*
d(x^*, y^*, a) = d(Px^*, Qy^*, a)
\leq \alpha[d(Px^*, y^*, a) + d(x^*, Qy^*, a)] + \beta[d(Px^*, x^*, a) + d(Qy^*, y^*, a)]
\leq \alpha[d(x^*, y^*, a) + d(x^*, y^*, a)] + \beta[d(x^*, x^*, a) + d(y^*, y^*, a)]
\leq \alpha [d(x^*, y^*, a) + d(x^*, y^*, a)]
\leq 2\alpha\; d(x^*,y^*,a)
This is not possible,
```

Therefore, we have $x^* = y^*$

Hence, x^* unique fixed point for the mapping P.

This completes the proof.

Corollary 3.1: Let (X, d, s) be a Complete b_2 -metric space with $s \ge 1$. $P, Q: X \to X$ are self-maps on X. Let any one of P and Qis continuous. Suppose, P and Q satisfies (3.1), then P and Q has a unique common fixed point in X.

Corollary 3.2: Let (X, d, s) be a Complete b_2 —metric space with $s \ge 1$. $P, Q: X \to X$ are both continuous self-maps on X satisfying (3.1), then P and Q has a unique common fixed point in X.

IV. DISCUSSION AND THE CONCLUDING REMARK

In this paper, the b_2 – metric under consideration is not necessarily continuous we have proved the existence and uniqueness of common fixed points for two mappings satisfying contractive type conditions in a b_2 - metric space.

REFERENCES

- [1] Ali, A. 2001. Macroeconomic variables as common pervasive risk factors and the empirical content of the Arbitrage Pricing Theory. Journal of Empirical finance, 5(3): 221–240.
- [2] Basu, S. 1997. The Investment Performance of Common Stocks in Relation to their Price to Earnings Ratio: A Test of the Efficient Markets Hypothesis. Journal of Finance, 33(3): 663-682.
- [3] Bhatti, U. and Hanif. M. 2010. Validity of Capital Assets Pricing Model. Evidence from KSE-Pakistan. European Journal of Economics, Finance and Administrative Science, 3 (20).
- [1] Bakhtin I. A., The Contraction Mapping Principle in almost Metric Spaces, Funct. Anal. Unisco, Gauss. Ped. Inst., vol. 30, pp.26-37, (1989).
- [2] Boriceanu M., Fixed Point theory for multivalued generalized contraction on a set with two b-Metric, studia, univ Babes, Bolya: Math, vol. Liv 3, pp.1-14, (2009).
- [3] Mehmat Kir Kiziltune, Hukmi., On Some Wellknown Fixed Point Theorems in b-Metric Space, Turkshi Journal of Analysis and *Number Theory*, vol. **1**, pp. 13-16, (2013).
- [4] Borkar V. C., et. Al., Common Fixed Point for nonaxpansive type mappings with application, Acta Cinecia India, vol. 4, pp.674-682, (2010).
- [5] Czerwik S., Contraction Mappings In b-Metric Spaces, Acta, Mathematica, et. Informatica Universities Ostraviensis, vol. 1, pp.5-11, (1993).
- [6] Czerwik S., Non-linear Set Valued Contraction Mappings in b—Metric Spaces. Atti sem Maths, FIQ Univ. Modena., vol. 46, pp.263-276.(1998).
- [7] Agrawal Swati, K. Qureshi and Jyoti Nema., A fixed Point Theorem for b-Metric Space, International Journal of Pure and Applied Mathematical Sciences, vol. 9, pp.45-50, (2016).
- [8] Chopade P. U., et. Al., Common Fixed Point Theorem for Some New Generalized Contractive mappings, Int. Journal of Math. Analisis, vol. 4, pp.1881-1890, (2010).
- [9] Borgaonkar V. D. and Dr. K. L. Bondar, Common Fixed Point theorem for Two Mappings in b-Metric Space, The Mathematics Student, vol. 90 (3-4), pp. 19-27, (2021).
- [10] Borgaonkar V. D. and Dr. K. L. Bondar, Existence and Uniqueness of Fixed Point for a Mapping in b-Metric Space, International Journal of All Research Education and Scientific Methods, vol. 10 (9), pp. 285-291, (2022).
- [11] Roshan J. R., et. Al., Common Fixed Point of Four Maps in b-Metric Spaces, Hacettepe Journal of Mathematics and Statistics, vol. 43, pp.613-624, (2014).
- [12] Suzuki Tomonari, Basic Inequality on a b-Metric Space and Its Applications, Journal of Inequalities and Applications, pp.2-11, (2017).
- [13] Borgaonkar V. D. et. al. Common Fixed Point theorem for Two Mappings in bi-b-Metric Space, Advances in Mathematics: Scientific Journal, 11(1), 25–34, (2022).
- [14] Gahler, VS: 2-metrische Raume und ihre topologische Struktur. Math. Nachr. 26, 115-118 (1963).
- [15] Zead Mustafa, Vahid Parvaneh, Jamal Rezaei Roshan and Zoran Kadelburg b2-Metric spaces and some fixed-point theorems, Fixed Point Theory Appl. 2014 (144).