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Abstract : In this study, we propose a cost-effective approach to predict inline inspection (ILI) results using 

machine learning (ML) models. Three prediction cases were considered: detecting defects, predicting defect 

dimensions, and estimating defect growth rates. Cat boost (CAT) emerged as the optimal ML method across 

all cases, offering high accuracy in predicting defect presence and characteristics. By leveraging pipeline 

attributes and environmental features, our approach significantly reduces unnecessary ILI costs and provides 

valuable insights for pipeline maintenance and management. Accurate predictions and insightful correlation 

analyses contribute to substantial cost savings and informed decision-making in pipeline integrity 

management. 
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Introduction 

In the realm of global energy transportation, pipelines serve as the lifelines, facilitating the movement of 

natural gas, petroleum products, and other vital energy resources. Ensuring the safe operation of these 

pipelines is paramount, necessitating recurrent inspections and assessments. Among the various methods 

employed for pipeline inspection, in-line inspection (ILI) stands out as one of the most widely utilized 

techniques. ILI, a form of non-destructive examination, plays a crucial role in preventative maintenance by 

identifying potential threats such as corrosion, cracks, and other defects that could lead to catastrophic 

structural failures. 

The process of ILI involves deploying sophisticated technological tools inside the pipeline, capable of 

traversing its entire length. These tools are equipped to detect and size anomalous conditions along both the 

inner and outer walls of the pipeline. Additionally, ILI tools record crucial data such as wall thickness and 

pipeline geometry, providing valuable insights into the pipeline's condition. The results gleaned from ILI 
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surveys are instrumental in determining the locations for repair and replacement within the pipeline 

network. 

Despite its effectiveness, ILI technology comes with a significant financial burden. The costs associated 

with ILI inspections are often substantial, with expenses typically calculated on a per-kilometer basis. The 

total expenditure can vary widely depending on factors such as the service provider, the complexity of the 

pipeline system, the number of inspections runs required, and any additional services or analyses needed. 

Moreover, the majority of pipelines inspected through ILI are found to be defect-free, rendering a significant 

portion of the ILI costs unnecessary. 

To address the challenge of cost-effectiveness in pipeline maintenance, researchers and industry 

practitioners have explored various approaches to predict pipeline safety and ILI outcomes. Historically, two 

primary methodologies have been employed: the Finite Element Method (FEM) and machine learning 

(ML). Each approach offers distinct advantages and challenges in the context of pipeline integrity 

management 

FEM, a numerical technique for solving engineering problems, has been extensively utilized in simulating 

the mechanical and electrochemical behavior of pipelines. Researchers have developed sophisticated FEM 

models to simulate corrosion potential, corrosion current density, and failure pressures at defects within 

pipelines. These simulations provide valuable insights into the mechano-electrochemical effects of pipeline 

corrosion, aiding in predicting failure pressures and assessing structural integrity. Despite their accuracy, 

FEM simulations often require high-resolution meshes, leading to computationally intensive processes and 

prolonged analysis times. 

In contrast, ML methods have gained traction in recent years for their ability to provide accurate predictions 

with reduced computational overhead. By leveraging large datasets and advanced algorithms, ML models 

can effectively predict pipeline defects and their characteristics. For instance, researchers have combined 

wavelet transform techniques with ML methods to predict defect dimensions using magnetic flux leakage 

(MFL) signals obtained from ILI inspections. These studies have demonstrated high levels of accuracy in 

detecting and estimating the size and depth of defects, without the need for complex preprocessing of ILI 

signals. 

One notable advantage of ML methods is their flexibility in handling diverse datasets and extracting 

valuable insights from them. For instance, researchers have proposed methodologies combining pattern-

adapted wavelet analysis with artificial neural networks to automate the analysis of MFL signals. These 

approaches have proven highly accurate and computationally efficient, enabling the detection and estimation 

of defect parameters without relying on prior knowledge of specific defect shapes. 

Furthermore, ML methods have been employed in predicting pipeline leakage detection, localization, and 

sizing, contributing to enhanced pipeline safety and reliability. Researchers have developed ML models 

using various input features, including inlet pressure, outlet flow, and statistical parameters derived from 

wavelet-based approaches. These models have demonstrated high accuracy in detecting leakage locations 

and severity, thereby minimizing environmental and financial risks associated with pipeline failures. 
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Despite the advancements in ML-based approaches, most previous studies have relied on ILI signals as 

input features, necessitating laborious preprocessing steps. This limitation poses challenges in implementing 

these methods in real-world industry settings where time and resources are often constrained. 

 

In this study, we propose a novel approach to predict ILI survey results using ML methods, specifically 

focusing on predicting defect presence, size, and growth rate. Unlike previous studies, our approach utilizes 

basic pipeline attributes as input features, which are readily available and require no complex preprocessing. 

By streamlining the prediction process, our methodology offers practical insights for pipeline integrity 

management, enabling cost-effective maintenance strategies and enhanced operational efficiency. 

In conclusion, ensuring the safe operation of pipelines is essential for the global transportation of energy 

resources. While ILI plays a crucial role in identifying potential threats, the associated costs can be 

substantial. By leveraging advanced methodologies such as ML, researchers and industry practitioners can 

develop cost-effective approaches to predict pipeline safety and optimize maintenance strategies. These 

efforts are instrumental in enhancing pipeline integrity, mitigating risks, and ensuring the reliable 

transportation of energy resources worldwide. 

2. Methodology 

    2.1. Methodology for Three ML Prediction Scenarios. 

This study examines three application cases employing machine learning (ML) methods to forecast primary 

Internal Lining Inspection (ILI) outcomes. Figure 1 delineates the process for these cases. Firstly, a ML 

classifier is employed to anticipate pipeline defects. Subsequently, ML regressors are utilized to forecast 

defect dimensions (length, width, and depth). Lastly, another ML regressor predicts defect length and depth 

growth rates, facilitating an analysis of pipeline residual life. Growth rates are computed based on defect 

depth data from ILI results in 2015 and 2020. 

     2.2 Approach. 

This research aims to develop a suite of machine learning (ML) techniques for accurately forecasting 

pipeline safety and residual life. It focuses on three prediction scenarios: defect prediction, defect size 

estimation, and growth rate prediction of defect depth. These cases are crucial for achieving the overarching 

objective. Defect prediction involves a classification task, as it discerns between two discrete outcomes: 

defect or non-defect. On the other hand, defect size prediction and growth rate prediction of defect depth 

constitute regression problems, as they entail continuous output variables such as defect length, width, depth, 

and growth rate. 

To address classification challenges, six robust classifiers are chosen: K-nearest neighbors (KNN), Artificial 

Neural Network (ANN), Random Forest (RF), Light GBM (LGBM), XGBoost (XGB), and Cat Boost 

(CAT). These classifiers offer diverse approaches to effectively tackle classification tasks. 

For regression tasks, namely defect size prediction and defect depth growth rate estimation, LGBM, XGB, 

and CAT are selected due to their superior performance compared to other ML methodologies. These 

http://www.jetir.org/


© 2024 JETIR June 2024, Volume 11, Issue 6                                                             www.jetir.org (ISSN-2349-5162)  

JETIR2406539 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f354 
 

methods are known for their capability to handle regression problems efficiently and accurately. 

Each ML method employed in this study undergoes a brief description, highlighting its distinctive features 

and suitability for the respective prediction tasks. By leveraging these advanced ML techniques, the research 

aims to significantly enhance the predictive accuracy of pipeline safety and residual life, thereby 

contributing to improved maintenance strategies and overall safety standards in pipeline operations. 

 2.2.1 Neighborhood-based Learning: Understanding K-nearest Neighbors. 

KNN stands as one of the fundamental machines learning algorithms, operating on a supervised learning 

principle. It relies on the notion of similarity between a new data point and existing ones, assigning the new 

point to the category most akin to its nearest neighbors. This method is commonly employed for 

classification tasks, determining the label of a sample based on the predominant category among its closest k 

neighbors. Often referred to as a "lazy learner" algorithm, KNN does not immediately learn from a training 

set but instead memorizes the entire dataset. In this approach, the algorithm defers computation until 

classification is required, making it efficient for real-time applications. The distance between two samples, 

denoted by xi and xj, is typically measured using the Lp distance metric. This metric defines the distance 

between two points in a feature space, aiding in the determination of similarity between data instances’-

Nearest Neighbors (KNN) is a cornerstone algorithm in machine learning, operating on the premise of 

supervised learning. Its principal hinges on the concept of similarity between a new data point and existing 

ones within a dataset. By leveraging this similarity measure, KNN assigns the new point to the category 

most resembling its nearest neighbors. This method finds extensive application in classification tasks, where 

it determines the label of a sample based on the prevalent category among its k closest neighbors. What 

distinguishes KNN from other algorithms is its "lazy learner" nature. Unlike many traditional machine 

learning algorithms that actively learn from training data upfront, KNN defers computation until 

classification is needed. Instead of constructing an explicit model during the training phase, KNN memorizes 

the entire dataset.  

This characteristic renders KNN particularly well-suited for real-time applications where quick response 

times are crucial, as it avoids the computationally intensive training process. Central to KNN's operation is 

the computation of distances between data points. Typically, the distance between two samples, denoted as 

xi and xj, is evaluated using the Lp distance metric. This metric defines the spatial separation between two 

points within a feature space, facilitating the assessment of similarity between data instances.  

The choice of the distance metric, often determined by the value of p, influences the interpretation of 

proximity between data points. For instance, the Manhattan distance (L1 norm) calculates distance as the 

sum of absolute differences between coordinates, while the Euclidean distance (L2 norm) computes the 

straight-line distance between points.KNN's simplicity, coupled with its effectiveness in capturing complex 

decision boundaries, has cemented its status as a foundational algorithm in the machine learning landscape. 

Despite its simplicity, KNN's performance can be influenced by factors such as the choice of distance 

metric, the number of neighbors (k), and data normalization techniques. As such, practitioners often employ 

KNN alongside other algorithms or preprocessing methods to achieve optimal results in classification tasks. 
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     Flow Chart of The Study Progress 

   2.2.2 Artificial neural network. 

         Artificial Neural Networks (ANNs) take inspiration from the complex network of neurons in the      

human brain to process information. Structured akin to the brain's architecture, ANNs are composed of 

layers of interconnected nodes, each representing an artificial neuron. This architecture typically includes an 

input layer where data is initially fed into the network, one or more hidden layers responsible for processing 

and transforming the input data, and an output layer that produces the final result. 

        Within an ANN, communication between neurons occurs through weighted connections. Each 

connection between neurons is assigned a weight, representing the strength of influence one neuron has on 

another. Additionally, neurons employ activation functions to determine their output based on the weighted 

sum of inputs and thresholds. Activation functions introduce non-linearities into the network, enabling it to 

learn complex patterns and relationships within the data. 

       During the forward propagation phase, input data is processed layer by layer through the network. 

Each neuron receives inputs from neurons in the previous layer, computes a weighted sum of these inputs, 

applies an activation function, and passes the output to neurons in the next layer. This process continues 

until the output layer produces the final result. 

              The training of an ANN involves adjusting the weights of connections to minimize the difference 

between the network's predictions and the actual target values. This is typically achieved through 

backpropagation, where the error is propagated backward through the network, and the weights are updated 

using optimization algorithms such as gradient descent. 
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      Overall, ANNs are powerful computational models capable of learning complex patterns and 

relationships from data. Their ability to mimic the brain's neural processing makes them versatile tools used 

across various fields, including image and speech recognition, natural language processing, and predictive 

modeling.          

   2.2.3 Ensemble Decision Forest 

Ensemble Decision Forest is an ensemble algorithm comprising decision trees, extensively employed in    

both classification and regression tasks. It constructs decision trees using a bagging technique, where random 

samples are selected from the original dataset with replacement to build each model or tree. Each model or tree 

is trained independently, yielding a potential outcome. The ultimate output of RF is determined through 

majority voting, wherein the results of all models or trees are combined and the most common result is selected. 

  

 

            Fig2 Architecture of ANN 

  

2.2.4 Extreme Gradient Boosting. 

         Extreme Gradient Boosting an open-source machine learning technique introduced by Chen et al, 

employs a Gradient Boosting Decision Tree algorithm and introduces numerous enhancements to the algorithm. 

It has gained widespread adoption in various machine learning competitions, demonstrating notable 

performance. Diverging from conventional gradient boosting approaches, XGB incorporates a regularized 

model formulation to mitigate overfitting and enhance prediction accuracy. This regularization mechanism 

involves the addition of a new term to the loss function. 
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                                                                                           L(f ) = 
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L( ̂yi, yi) + 
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Ω(δm) 

  
 

 2.2.5 A Swift and Effective Gradient Boosting Library. 

           Similar to XGBoost (XGB), LightGBM (LGBM) is a high-performance framework designed for 

distributed computing, developed by a research team at Microsoft in 2017. Both frameworks utilize decision 

trees for classification and regression tasks. However, LGBM employs a different approach compared to XGB. 

While XGB follows a level-wise (horizontal) growth strategy, LGBM adopts a leaf-wise (vertical) growth 

strategy. 

         This distinction offers several advantages for LGBM. Firstly, the leaf-wise growth strategy 

contributes to faster training speeds, allowing LGBM to process data more efficiently. Additionally, this 

approach tends to yield higher prediction accuracy, as it enables the model to focus on more informative splits 

during tree construction. Moreover, LGBM's leaf-wise growth strategy facilitates support for parallel learning, 

where multiple tasks can be executed simultaneously, enhancing scalability and performance. Furthermore, 

LGBM is capable of leveraging GPU acceleration, further boosting its computational efficiency. 

        Overall, LGBM's unique approach to tree growth makes it a powerful and efficient tool for various 

machine learning tasks. Its ability to deliver fast training speeds, high accuracy, and support for parallel and 

GPU learning makes it particularly well-suited for large-scale datasets and computationally intensive 

applications. 

    2.2.6 A Robust Gradient Boosting Framework for Categorical Data. 

        LightGBM (LGBM), akin to XGBoost (XGB), stands as a distributed, high-performance framework 

renowned for its adeptness in employing decision trees for both classification and regression tasks. Introduced 

by a team of researchers at Microsoft in 2017, LGBM sets itself apart from its XGB counterpart by adopting a 

leaf-wise (vertical) growth strategy, a departure from XGB's level-wise (horizontal) growth approach. 

       This distinctive growth methodology yields several advantageous outcomes for LGBM. One notable 

advantage is its ability to achieve accelerated training speeds. By prioritizing the growth of trees by leaf nodes 

rather than levels, LGBM can efficiently focus on splits that offer the most significant information gain, thereby 

streamlining the training process and enhancing overall computational efficiency. This accelerated training 

capability is particularly beneficial when dealing with large-scale datasets and computationally intensive tasks, 

where speed is of the essence. 

        Furthermore, LGBM's leaf-wise growth strategy often translates into improved prediction accuracy. By 

prioritizing informative splits, the model can better capture complex patterns and relationships within the data, 

leading to more precise predictions. This heightened accuracy is instrumental across various applications, 

including finance, healthcare, and e-commerce, where the ability to make reliable predictions is paramount 

      Moreover, LGBM's design facilitates support for parallel learning, enabling multiple tasks to be executed 

concurrently. This parallelization capability enhances scalability, allowing LGBM to efficiently handle large 

datasets and complex models. Additionally, LGBM boasts compatibility with GPU learning, leveraging the 

computational power of graphics processing units to further accelerate training speeds and enhance 

performance. 
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       In essence, Light GBM's adoption of a leaf-wise growth strategy represents a significant advancement in 

gradient boosting frameworks, offering not only accelerated training speeds and improved accuracy but also 

robust support for parallel and GPU learning, making it a preferred choice for a wide range of machine learning 

tasks and applications. 

 2.3. Metric Evaluation. 

        In this research, performance metrics were employed to measure the effectiveness of a predictive model. 

Two sets of metrics were utilized: one for evaluating classification performance (defect prediction), and the 

other for assessing regression performance (predicting defect length, defect width, defect depth, and defect 

depth growth rate) 

   2.3.1 classification scenario. 

          The evaluation metrics for a classification problem rely on several key indicators. True Positive (TP) 

occurs when a model accurately predicts a positive class, while True Negative (TN) indicates correct predictions 

of a negative class. False Positive (FP) signifies incorrect predictions of a positive class, and False Negative (FN) 

represents inaccurate predictions of a negative class. In this investigation, defect prediction constitutes a binary 

classification issue with two outcomes: "defect" and "non-defect," where "Defect" is considered the positive class 

and "non-defect" the negative class. Three metrics utilized in this research can be derived from a confusion 

matrix. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

TP + FP
 

 

 RECALL =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Accuracy is determined by the proportion of correctly predicted samples relative to the total number of 

samples. Precision is computed as the ratio of true positives to predicted positives, while recall represents the 

ratio of true positives to all actual positives. 

2.4 Deciphering Results Using the Shapley Additive explanation (SHAP) Method. 

      SHAP, pioneered by Lundberg and Lee in 2017, is a technique for interpreting machine learning model 

predictions by leveraging Shapley values. The fundamental concept behind SHAP involves computing Shapley 

values for every feature in a given sample for interpretation. Each Shapley value quantifies the contribution of 

the associated feature to the model's prediction. In the context of a linear function involving binary features, 

SHAP offers a method to succinctly express this relationship. 

3.Real-World Scenarios. 

3.1. Fault Prediction. 

       Unlike previous studies (references [9–17]), which utilized features derived from ILI signals, this research 

shifts focus to predicting pipeline defects using fundamental pipeline attributes. Data from a major pipeline 

company includes details of 11,000 pipeline sections and ILI outcomes from 2020, predominantly for natural 

gas transport. Among these, 2158 sections exhibit defects, while 8842 pass ILI unscathed. Six ML models 
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(KNN, ANN, RF, LGBM, XGB, CAT) are developed, considering seventeen input features such as length, 

manufacturing year, yield strength, diameter, thickness, material, manufacturer, seam type, and inspection date. 

Defect prediction involves dimensions like length, width, and depth, treating defects as regular rectangular 

shapes for analysis. The study also compares three ML methods: XGB, LGBM, and CAT. 

3.2. Defect Dimension Forecasting. 

      To further forecast the dimensions of defects identified in pipelines, we develop three ML models using 

data from 2158 defective pipeline samples. These models aim to predict the length, width, and depth of 

observed defects. Given the complexity and variability of actual defects, we simplify their shapes to regular 

rectangles for analytical purposes. In the pipeline inspection field, ILI analysis primarily focuses on defect 

location and utilizes dimensions like length, width, and depth for measuring defects. The input variables align 

with those outlined in Section 3.1. We evaluate and compare the performance of three ML techniques – XGB, 

LGBM, and CAT – in this context. 

3.2.1 Forecasting Defect Length and Depth Growth Rate. 

       Among the subset of 2158 defective pipeline sections mentioned in Section 3.1, 505 samples include defect 

depth data retrieved from ILI results dating back to 2015. By juxtaposing the defect length (DL) and defect 

depth (DD) values collected in 2020 with those from 2015, the actual defect length growth rate (DLGR) and 

depth growth rate (DDGR) are calculated. This methodology, elucidated in reference [27], facilitates the 

evaluation of how defects' length and depth within the pipelines have progressed over the specified period. 

𝐷𝐿𝐺𝑅 =
DL2020 − DL2015

5YEARS
 

In this context, DLGR (defect length growth rate) and DDGR (defect depth growth rate) act as output features, 

indicating the rate of increase in length and depth of pipeline defects over time. These metrics are pivotal for 

evaluating pipeline structural integrity and safety. The predictive capabilities of three machine learning models 

– XGB, LGBM, and CAT – are assessed to ascertain their accuracy in forecasting these growth rates. By 

gauging the models' performance in predicting DLGR and DDGR, stakeholders can make well-informed 

decisions regarding maintenance and repair schedules, ultimately bolstering pipeline reliability. 

4. Outcome and Examination. 

4.1 Assessment of Machine Learning Models for Pipeline Defect Prediction. 

4.1.1 Optimizing Model Parameters: Fine-Tuning for Improved Performance. 

         A hyperparameter is a parameter instrumental in controlling the learning process of a model. Prior to 

constructing all machine learning models, hyperparameter tuning becomes indispensable to select an optimal 

set of hyperparameters, thereby crafting the most effective predictive model. Table 2 outlines the ideal 

combinations of hyperparameters for all ML models employed in the defect prediction study. This tuning 

process significantly enhances the model's predictive performance by fine-tuning parameters to suit the specific 

characteristics of the dataset and problem at hand. 
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                              Fig 5  Statistical description of numerical input features used in prediction. 

The proportion metric is essential for companies making informed decisions about pipeline management. In 

Fig. 5, proportions of predictions across three models are shown. The XGB model confidently identifies 61% of 

samples as non-defective with a CPT of 0.97, while LGBM and CAT models show different proportions. The 

CAT model stands out with 94% of certain predictions, making it the most effective. This high precision 

reduces the need for further inspection to just 6% of uncertain samples. Such accuracy enhances decision-

making confidence, optimizing resource allocation and risk mitigation in pipeline management. Utilizing 

advanced machine learning techniques like the CAT model is crucial for maximizing pipeline management 

strategies. 

 KNN   ANN   RF   

Prediction 

performance 

0.921 0.919 0.923 0.948 

 

0.951 0.948 0.941 

 

0.936 

 

0.942 

 XGB   LGBM   CAT   

Prediction 

performance 

precision recall 

 

accuracy 

 

precision recall 

 

accuracy 

 

precision recall 

 

accuracy 

 

 0.959 0.964 0.967 0.961 0.954 0.962 0.969 0.975 0.971 

                                       Prediction performance of six ML classifiers for defect/non-defect of pipelines. KNN 

 

4.1.2 Forecasting Pipeline Defects: A Binary Classification Approach. 

The performance of KNN, ANN, RF, XGB, LGBM, and CAT models in defect prediction was assessed using 

accuracy, precision, and recall metrics. Results from a test dataset (20% of the sample) show satisfactory 

performance overall, with metrics exceeding 0.91. Notably, XGB, LGBM, and CAT outshine others, with 

values surpassing 0.95 for all metrics. CAT particularly excels, boasting the highest precision (0.969), recall 

(0.975), and accuracy (0.971). 

To further compare XGB, LGBM, and CAT, the certain prediction proportion metric is introduced, using 

thresholds (CPT and CFT) previously used with XGB. These thresholds are extended to LGBM and CAT 
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models, with CPT separating certain 'non-defect' predictions and CFT separating certain 'defect' predictions. 

 

This metric holds significance for industry applications, offering targeted insight into predictions deemed 

entirely trustworthy. Unlike overall statistical results, it aids in making informed decisions about pipeline 

management and maintenance, enhancing confidence in predictions and enabling proactive defect mitigation 

strategies. 

4.1.2 Forecasting Pipeline Defect Size. 

"Comparative Analysis of XG Boost (XGB), Light GBM (LGBM), and Cat Boost (CAT) Models for Predicting 

Defect Size" 

The evaluation of XGB, LGBM, and CAT models in predicting defect size highlights CAT as the standout 

performer across various evaluation metrics. Assessment criteria such as Root Mean Squared Error (RMSE), 

Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2) value were considered, where 

lower RMSE, MSE, and MAE, along with higher R2, indicate better predictive performance. 

In defect depth prediction, all three ML methods demonstrate robust capabilities, with CAT leading with the 

highest R2 value (0.9574) and the lowest RMSE (0.1061), MSE (0.0113), and MAE (0.0684). This underscores 

CAT's superior accuracy and precision compared to XGB and LGBM. While XGB follows CAT in prediction 

accuracy, LGBM lags behind with less favorable results. 

For defect length prediction, the ML models exhibit moderate predictive ability, with CAT once again 

showcasing the highest R2 value (0.7781). XGB and LGBM perform comparatively lower in this aspect, with 

R2 values of 0.6035 and below. 

In predicting defect width, all three ML methods demonstrate weak predictive ability, with CAT achieving the 

highest R2 value of 0.5527. Despite the challenges in this area, CAT maintains its edge over XGB and LGBM. 

Overall, CAT emerges as the preferred choice for defect size prediction due to its consistent superiority across 

all evaluated metrics. Its ability to minimize RMSE, MSE, and MAE while maximizing R2 underscores its 

effectiveness in accurately forecasting defect dimensions. This comparative analysis highlights CAT's potential 

as a powerful tool for defect size prediction in various applications. 

4.2 Forecasting the Growth Rates of Defect Length and Depth. 

         The authors conducted predictive analyses on defect growth rates, encompassing depth, length, and 

width. Their findings revealed a strong correlation between the growth rates of defect depth and length with the 

input features. However, the predictive performance for defect width growth rate was notably unsatisfactory. 

In this section, the focus shifts to a more detailed examination based on a dataset comprising 505 defect 

samples, encompassing defect length and depth data collected in 2015 and 2020. From this dataset, the authors 

derived the defect length growth rate (DLGR) and defect depth growth rate (DDGR) using equations (13) and 

(14), respectively. This approach aims to deepen the understanding of how these growth rates evolve over time, 

providing insights into the dynamics of defect development within the studied timeframe. 
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     Prediction performance of six ML classifiers for defect/non-defect of pipelines. 

4.2.1Forecasting Defect Length Growth Rate Dynamics 

      In their study, the authors examined the predictive accuracy of defect growth rates, specifically focusing on 

depth, length, and width expansions. Their findings revealed a strong correlation between input features and the 

growth rates of defect depth and length. However, the prediction performance for defect width growth rate was 

comparatively poor. Consequently, this section delves into an analysis based on a dataset comprising 505 defect 

samples recorded with defect length and depth measurements in both 2015 and 2020. Utilizing equations 

tailored for this purpose, the study computes the defect length growth rate (DLGR) and defect depth growth rate 

(DDGR) from the provided data. This analytical approach aims to shed further light on the dynamics of defect 

expansion over the specified time period, offering valuable insights into the mechanisms driving defect growth 

within the studied context. 
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3.68*10—2 

 
 
3.03*10—2 
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MSE 

 
4.23*10—4 

 
3.92*10—4 

 
9.22*10—5 

 
MAE 

 
2.26*10—2 

 
1.97*10—2 

 
7.19*10—3 

R2 
0.944 0.952 0.967 

                                    Assessment of Three Models' Predictive Performance for Defect Length Growth Rate 

 

4.2.2 Anticipating Dynamics in Defect Depth Growth Rate Prediction. 

         Using a dataset consisting of 404 samples for training machine learning (ML) models and 101 samples for 

testing, the exceptional accuracy of predictions highlights the robust predictive capabilities of the three ML 

techniques in forecasting defect depth growth rate (as shown in Table 7). All three methods demonstrate 

remarkable performance, yielding R2 values exceeding 0.96. Particularly, the CAT model exhibits the highest 

R2 value (0.989) alongside the lowest Root Mean Square Error (RMSE) (9.1510^-3), Mean Squared Error 

(MSE) (8.3710^-5), and Mean Absolute Error (MAE) (6.04*10^-3) among the models developed in this study. 

These results underscore the efficacy of ML approaches in accurately predicting defect depth growth rate, 

indicating their potential utility in practical applications within this domain.   
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Metrics XGB LGBM CAT 
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1.09*10—2 

 
1.14*10—2 

 
6.04*10—3 

R2 
0.971 0.963 0.989 

  Evaluation of Three Models' Predictive Accuracy for Defect Depth Growth Rate 

 

4.2.3 Exploring Feature Importance: SHAP Analysis for Predicting Defect Depth Growth Rate. 

          Based on the CAT model's predictions, Figure 7 presents a SHAP plot, which assesses variables by their 

impact on the defect depth growth rate in pipelines. The analysis focuses on the top six influential features, as 

they exert a greater influence on defect depth growth rate compared to other factors. Notably, the Steel 

Minimum Yield Strength (SMYS) of a pipeline section emerges as the most critical feature affecting defect 

depth growth. Higher SMYS values correlate with a reduced likelihood of defect depth growth, indicating 

stronger pipelines less prone to deformation-induced defects. Similarly, Pipeline Year (PY) follows as another 

significant input, where newer pipelines with enhanced safety standards exhibit decreased defect growth rates. 

However, for the subsequent four vital features, including railway lines, wetlands, and elevated Maximum 

Operating Pressure (MOP), higher values correspond to an increased likelihood of greater defect depth growth 

rates. Conversely, a high clay content in soil type is associated with decreased defect growth rates. 

4.2.4Assessment of Pipeline Remaining Service Life. 

Determining the remaining lifespan of a pipeline is a pivotal task within the industry, encompassing a 

multifaceted process. Here's an overview of the essential steps involved: 

(1) Assessing Pipeline Condition: The initial step entails evaluating the current state of the pipeline 

comprehensively. This assessment encompasses scrutinizing its physical integrity and identifying any existing 

defects such as corrosion, cracks, or deformations. Advanced Inspection and Evaluation (ILI) techniques like 

ultrasonic testing and magnetic flux leakage are commonly employed to detect and quantify these defects 

accurately. 

(2) Estimating Defect Growth Rates: Subsequently, it's imperative to ascertain the growth rate of each 

identified defect. This involves employing appropriate methodologies to gauge how these defects evolve over 

time. Utilizing data sourced from the pipeline itself, historical records, and industry benchmarks, these growth 

rates are calculated meticulously to provide insights into the progression of defects. 

(3) Determining Pipeline Remaining Service Life: Armed with knowledge of defect growth rates, the 

next step entails calculating the pipeline's remaining service life. This computation revolves around estimating 

the duration it will take for defects to escalate to a critical size or threshold, potentially leading to pipeline 

failure. Factors such as corrosion depth and failure pressure are integral to this assessment, as they profoundly 

impact the pipeline's structural integrity and safety. 

Throughout this process, meticulous consideration is given to various factors influencing pipeline 

longevity, ensuring a comprehensive evaluation of its condition and future prospects. By integrating data-driven 

analyses and industry expertise, stakeholders can make informed decisions regarding maintenance strategies 
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and risk mitigation measures, thereby safeguarding the pipeline's operational integrity and longevity.\ 

4.3 Estimating Lifespan Using Failure Pressure Analysis 

Predicting the failure pressure of defective pipelines is crucial for ensuring the safety and longevity of pipeline 

infrastructure. Common methods utilized for this purpose include industrial models and Finite Element Method 

(FEM) analysis. In the industry, setting the Maximum Operating Pressure (MOP) at 80% of the calculated 

failure pressure is a prevalent practice recommended by regulatory bodies such as the Pipeline and Hazardous 

Materials Safety Administration (PHMSA) and the American Petroleum Institute (API) Standard 579 (Fitness 

for Service). Among these methods, the ASME-B31G model (MB31G) stands out as a widely accepted 

industrial model for calculating the failure pressure of pipelines with corrosion defects 

 

       R2 Value Plots and Comparative Analysis of Three Models' Predictions for Defect Depth Growth Rate 
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              SHAP Value Plot Analysis: CAT Model's Predictions for Defect Depth Growth Rate" 
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Contrasting Defect Length Changes: Predicted DLGR vs. Actual DLGR. 

 

Pipeline Failure Pressure Prediction Methods. 

Industrial models and FEM analysis are the primary approaches employed to predict the failure pressure of 

pipelines with defects. Industrial models, such as the ASME-B31G model, utilize simplified equations and 

empirical data to estimate failure pressure. These models consider factors such as defect size, shape, and 

orientation, as well as material properties and operating conditions. On the other hand, FEM analysis provides a 

more detailed understanding by simulating the behavior of the pipeline under various loading conditions. While 

FEM analysis offers higher accuracy, it requires significant computational resources and expertise, making it 

less accessible for routine assessments. 

 

Guidelines for Setting Maximum Operating Pressure: 

The practice of setting the MOP at 80% of the calculated failure pressure is based on safety 

considerations to provide a margin of safety against unexpected failures. This approach ensures that the pipeline 

operates within a safe operating range while allowing for variations in operating conditions and uncertainties in 

the prediction models. Regulatory bodies such as PHMSA and API Standard 579 endorse this practice to 

promote the integrity and reliability of pipeline systems. 

Role of ASME-B31G Model in Failure Pressure Prediction: 

The ASME-B31G model, commonly referred to as MB31G, is widely recognized and utilized in the 

industry for predicting the failure pressure of pipelines with corrosion defects. This model incorporates factors 

such as defect dimensions, depth, and location to estimate the remaining strength of the pipeline. By 

considering the interaction between defects and material properties, MB31G provides engineers with a practical 

tool for assessing the structural integrity of pipelines and making informed decisions regarding maintenance 

and operational strategies. 
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Comparing Pipeline Failure Pressure: Predicted DDGR-DLGR vs. Actual DDGR/DLGR 

4.3.1Assessing Pipeline Remaining Life Through Defect Depth Analysis. 

The management of pipeline corrosion is crucial for ensuring the safety and longevity of Canada's 

pipeline infrastructure. Regulations and standards set by the Canadian Energy Regulator (CER) mandate regular 

inspections and maintenance activities to uphold pipeline integrity. The allowable corrosion depth varies 

depending on factors such as pipeline type, material, and location. This article explores the regulatory 

framework governing pipeline corrosion in Canada and presents a methodology for calculating the remaining 

life of pipelines based on defect depth. 

Regulatory Framework for Pipeline Corrosion: 

The CER establishes guidelines for managing pipeline corrosion in Canada, aiming to prevent accidents 

and environmental harm. These regulations require pipeline operators to conduct inspections and maintenance 

to detect and address corrosion issues promptly. Specific standards dictate the maximum allowable corrosion 

depth based on factors like pipeline material and diameter. For instance, pipelines made of carbon steel 

typically have a maximum allowable corrosion depth of 50% of the pipe wall thickness, while those made of 

API 5L Grade X60 steel may permit up to 80% of the nominal wall thickness. 

Application and Analysis: 

Figures 8 and 9 illustrate the growth of defect depth values over time and the corresponding changes in 

defect depth to pipe wall thickness ratio (D/T) for ten defects. These figures demonstrate how predicted defect 

depth growth closely aligns with actual values, facilitating accurate estimation of remaining life. Notably, while 

some defects exhibit significant depth, their relatively low growth rates result in longer remaining life spans 

compared to defects with higher growth rates. For instance, defect "d" has the highest depth but a small growth 

rate, allowing the associated pipeline to remain in service until 2035 within a 50% allowable D/T limit. 

Conversely, defects "b" and "h" exhibit shorter remaining lives due to their high growth rates, necessitating 

inspection and repair by 2022–2023.The assessment of pipeline integrity based on corrosion depth is essential 

for ensuring the safe and reliable operation of Canada's pipeline network. By adhering to CER regulations and 

employing methodologies for calculating remaining life, pipeline operators can effectively manage corrosion-

related risks and prioritize maintenance activities. Continuous monitoring and proactive maintenance strategies 

are paramount to extending the lifespan of pipelines and minimizing the likelihood of failures, thereby 
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safeguarding public safety and environmental integrity. 

n the realm of pipeline management and maintenance, accurately predicting failure points is paramount 

to ensure safety, efficiency, and cost-effectiveness. Various methods, such as Finite Element Method (FEM) 

and MB31G model, are employed to estimate failure pressures and defect growth rates. This study delves into 

the comparative analysis of these methods, shedding light on their accuracy, computational efficiency, and 

practical applicability. 

Pipelines are lifelines of modern infrastructure, transporting critical resources across vast distances. 

However, they are susceptible to defects and degradation over time, necessitating robust inspection and 

maintenance strategies. Predicting failure points accurately is crucial for preemptive action, avoiding 

catastrophic consequences and ensuring uninterrupted service. 

Defect Growth Analysis 

Figures 10 and 11 present the evolution of defect lengths and failure pressures over time. Notably, while 

defect lengths vary significantly, their growth rates remain remarkably similar. This underscores the importance 

of accurately predicting growth rates to anticipate future risks.             

 

Analyzing Defect-Depth Transition: Predicted DDGR vs. Actual DDGR" 
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Comparing Pipeline Failure Pressure: MB31G vs. FEM Calculations" 

 

4.3.2Analyzing Remaining Pipeline Lifespan: A Comparative Study of Prediction Methods. 

 Understanding the factors influencing the remaining lifespan of pipelines is crucial for effective 

maintenance and risk management. This study employs SHAP (Shapley Additive explanations) analysis to 

identify key features impacting pipeline longevity. By examining the influence of steel yield strength (SYMS), 

pipe yield strength (PY), and maximum operating pressure (MOP) on remaining life, this research sheds light 

on how different soil types and pipeline specifications affect pipeline durability. 

Key Features Impacting Pipeline Remaining Life: 

Fig. 14 presents a comparative analysis of pipeline remaining life based on important features identified 

through SHAP results. These features encompass SYMS, PY, and MOP, each playing a significant role in 

determining pipeline longevity. Pipelines situated in various soil types with diverse specifications were 

randomly selected to elucidate the impact of these features comprehensively 

Influence of SYMS, PY, and MOP: 

The analysis reveals a direct correlation between SYMS and PY with pipeline remaining life, indicating 

that pipelines with higher steel and pipe yield strengths exhibit prolonged lifespans. Conversely, an increase in 

MOP is associated with a decrease in remaining life, underscoring the importance of operating pressure in 

assessing pipeline integrity. This relationship highlights the critical role of material strength and operational 

parameters in determining pipeline durability. 

Effects of Pipeline Specification and Location: 

Furthermore, the rate of change in remaining life varies depending on pipeline specifications and 

geographical location. A notable finding is the positive relationship between pipeline thickness and remaining 

lifespan, suggesting that thicker pipelines tend to have longer operational durations. Additionally, pipelines 

located in railway lines experience a more significant increase in remaining life with higher SYMS and PY 

compared to those in wetlands, emphasizing the influence of environmental factors on pipeline longevity 
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Impact of Soil Composition: 

The analysis also delineates the impact of soil composition on pipeline remaining life. Pipelines situated 

in clay-rich soil exhibit a slower decline in remaining life with increasing MOP compared to those in sandy 

soil. This observation underscores the importance of soil characteristics in assessing pipeline durability, as 

varying soil types can significantly influence corrosion rates and structural integrity. 

Implications for Maintenance Strategies: 

By understanding the nuanced interplay between key features and environmental factors, pipeline 

operators can devise targeted maintenance strategies to prolong asset lifespan and mitigate risks effectively. 

Prioritizing inspections and repairs based on identified influential factors enables proactive maintenance, 

ensuring the continued safe and efficient operation of pipelines. 

In conclusion, the comparative analysis of pipeline remaining life based on key features provides 

valuable insights into the factors influencing pipeline durability. By considering parameters such as SYMS, PY, 

MOP, and soil composition, operators can make informed decisions regarding maintenance and risk 

management. This research contributes to enhancing pipeline integrity and safety in diverse operating 

environments, ultimately optimizing asset performance and longevity. 

5.conclussion. 

In conclusion, this study represents a significant advancement in the realm of pipeline integrity management 

through the utilization of intelligent pigging (ILI) data and machine learning (ML) models to predict defect 

presence, dimensions, and growth rates. The comprehensive analyses conducted have shed light on the efficacy 

of various ML methodologies in forecasting pipeline defects and their evolution over time. 

First and foremost, the research findings highlight the pivotal role of the CAT model in defect prediction. 

Through meticulous comparison and evaluation, CAT emerged as the most efficient and accurate method, 

boasting a remarkable 94% prediction ratio. Its superior performance across a range of evaluation metrics 

underscores its potential as a reliable tool for preemptive defect detection, allowing pipeline operators to 

prioritize inspections and maintenance activities effectively. 

Furthermore, the study delved into the prediction of defect dimensions, where XG Boost (XGB), Light GBM 

(LGBM), and CAT models showcased proficiency, particularly in defect depth prediction. While challenges 

were encountered in accurately predicting defect width, CAT's overall superior performance positioned it as the 

optimal choice for defect dimension forecasts. This underscores the importance of leveraging advanced ML 

techniques to gain insights into defect morphology, facilitating targeted interventions to address potential 

integrity threats. 

Moreover, leveraging ILI data spanning multiple years enabled the forecasting of defect length and depth 

growth rates with remarkable accuracy. Among the ML models employed, CAT demonstrated the highest 

prediction accuracy, enabling precise estimation of defect evolution over time. The elucidation of key input 

features influencing defect growth rates through SHAP analysis further enhanced the understanding of pipeline 

behavior, facilitating the estimation of remaining pipeline lifespan based on critical thresholds such as 

maximum allowable defect depth and failure pressure. 
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