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Abstract:  Solution is obtained with the help of some approximate numerical grid methods using a computer in 

computational method. Generally, grid methods are used to obtain solution in computational method. Computational grid 

method of analysis are applicable to a much wider class of mathematical formulations and hence most problems can be 

solved. With the advent of fast computers, algorithmic models have become very widely used valuable tool for solving 

engineering problems.  
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1. INTRODUCTION  
Many practical problems are complex in nature. A model is often needed to solve a system consisting of any domain of 

interest and various phenomena that take place in it. Modelling can be done through physical means with laboratory and field 

experiments or through mathematical means.  Physical modelling in laboratory or field can be expressive as well as time consuming. 

Due to these difficulties in physical modelling in laboratories or in the real world, use of mathematics in solving the problems has 

becomes widespread in the recent times. Depending on the mathematical modelling approach, the development of numerous 

numerical methodologies have made the mathematical modelling invertible for all branches of engineering.  

There are variety of mathematical models are available which are based on the numerical methods such as Method of Characteristics, 

Finite Difference Method (FDM), Finite Volume Method (FVM), Finite Element Method (FEM), Boundary Element Method 

(BEM) and other have been developed by mathematician and scientists for solution of engineering problems. Out of many available 

numerical methods, FDM, FVM, FEM and BEM are most popular numerical grid techniques. When numerical grid methods are 

used in mathematical modelling, the ensuring computer model generally consists of pre-processing, processing and post-processing.  

In the pre-processing part of the model, input data required to solve the problem include domain geometry, initial and boundary 

conditions, coefficients and constants for the particular problem, value of universal constants, the grid information such as triangular 

grid, rectangular grid and so on and various options for the concerned problem like 1D, 2D and 3D steady or unsteady state analysis.  

Grid generation is an important task of pre-processing. The grid generation includes discretization of the domain into elements and 

determining grid points and it depends on the type of numerical method used and dimension of the model. Grid can be generated 

manually or computer programming can be written  

or separate grid generating packages can be used.  In the processing part, real simulation of the problem with the concerned 

numerical model is done which includes generation of element matrices, assembly of element equations, and imposition of boundary 

conditions and solution of system of equation. In the post-processing part, results obtained are processed in terms of tables, charts, 

graphs and so on. Computer program can be written such that results are displayed graphically or separate post-processing packages 

can be used.  

The remainder of the review article is organized as follows. In section 2, what kind of the research work have been done by 

researchers are given. The section 3 gives the idea about the problem formulation. In section 4, the numerical grid methods and the 

essential basic steps have discussed. In section 5, we have mentioned what kind of computer resources, programs and separate 

packages are going to use. We have discussed the applications of numerical grid methods in section 6. Finally, section 7 concludes 

the review article. 

2. LITERATURE SURVEY 

Many Approximate numerical methods have evolved in the last six decades for solution of complex engineering problems due to 

advent of high speed computers. Out of various available numerical grid techniques FDM, FVM, FEM, BEM and mesh less have 

become popular among scientists and engineers. Out of these numerical grid methods, one of the most important advance in the 

field of numerical methods was the development of FEM in the 1940s. 
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Hrenikoff (1941) proposed the frame work method for the solution of elasticity problems. On the other side, Courant (1943) 

presented an assemblage of piecewise polynomial interpolation over triangular elements and the principal of minimum potential 

energy to solve torsion problems. Some mathematical aspects related to eigen values were developed for boundary value problems 

by Poyla (1954), Hersch (1955) and Weinberger (1958). Foundation of finite element was laid by Argyris in (1955) through his 

book on Energy Theorem and Structural Analysis. Turner and team (1956) developed the stiffness matrices for truss, beam and 

other elements for engineering analysis of structures.  

For the first time in 1960, the terminology Finite Element Method was used by Clough (1960) in his paper on the plane elasticity. 

In 1960s, a large number of papers appeared related to the applications and developments of the finite element method.  Curve 

edged elements of quadrilateral type were first introduced in FEM by Taig (1961). A number of international conference related to 

FEM were organized and the method got established. The first book on FEM was published by Zienkiewicz and Cheung in 1967. 

The procedure of deriving interpolation functions and its properties is very similar to that derived for quadratic type interpolation 

functions earlier. The scheme would be initially demonstrated for linear, quadratic and cubic type line elements before explaining 

further to higher order elements (Heubner, 1975).  Pinder and Gray (1977), Wang and Anderson (1982), Huyakon and Pinder 

(1983), Segerlind (1984) and Istok (1989) have given more details on application of FEM to groundwater flow and transport 

problems. 

For structural mechanics problems, vibrational functional or some kind of relationship useful in FEM analysis can be derived using 

the principal of virtual work, principle of minimum potential energy method is most commonly used (Shames and Dym, 1991 and 

Zienkiewicz) and Castigliano theorem (1991). It was also derived by employing direct equilibrium approach (Lohan, 1993). Finite 

element formulation for the parallel loading has already been presented in the book on plates by Reddy (1999) for detailed studies. 

The detailed discussion of non-linear analysis can be found in advanced finite element textbook such as Zienkiewicz and Taylor, 

Bathe (2001).  Chapra and Canale (2002) presented the finite element formulations of some important steady-state partial 

differential equations governing the field problems in two dimensional Laplace equation is an elliptic equation. Based on the 

Galerkin FEM formulation, a computer program has been developed using the FORTRAN for the Laplace equation. Arpita M. 

(2008) have given more details on application on FEM-GA for groundwater remediation using optimization model. A Srirekha and 

Kusum Bashetty (2010) presented an overview on FEA and which is one of the application of FEM in health science. E. Nadal and 

team (2013) were proposed efficient finite element methodology based on Cartesian grids. Neela Nataraj and A. S. Vasudeva (2019) 

Murthy presented a summary of major contributions of Indian mathematicians to the mathematical aspects of the finite element 

method in the last one decade and that review is accessible to anybody with a background in partial differential equations and 

numerical techniques for solving it. By now, a large number of research papers, proceedings of international conferences and short-

term courses and books have been published on the subject of FEM. Many software packages are also available to deal with various 

types of problems. 

 

3. PROBLEM FORMULATION 

Generally, the governing equations can be classified into algebraic equations, ordinary differential equations (ODE), partial 

differential equations (PDE) and integral equations. Differential equations are classified according to their order.  An equation is 

said to be of order n if the highest derivative of the dependent variable is of order n.  

As many physical laws are expressed in terms of the rate of change of a quantity rather than the magnitude itself, the ODE are of 

most importance in engineering practice.  Let us consider, the deflection y of a mass spring system with damping can be expressed 

with a second order differential equation as  

𝑚
𝑑2𝑦

𝑑𝑡2 + 𝑐
𝑑𝑦

𝑑𝑡
+ 𝑘𝑦 = 0                                                                            (1) 

Where m is the mass, c is the damping coefficient, k is the spring coefficient and t is the time. 

Dependent physical quantities vary with two or more independent variables and hence PDE formulations are used in many practical 

situations. The order of a PDE is that of the highest order partial derivative that appears in the equation. 

 Let us consider, a second order PDE with two independent variables as  

𝑎
𝜕2𝑝

𝜕𝑥2 + 𝑏
𝜕2𝑝

𝜕𝑥𝜕𝑦
+ 𝑐

𝜕2𝑝

𝜕𝑦2 + 𝛼 = 0                                                                    (2) 

Where a, b and c are functions of x and y and 𝛼 is a function of x, y, p, 
𝜕𝑝

𝜕𝑥
  and  

𝜕𝑝

𝜕𝑦
 .  

Sometimes, physical laws are expressed in terms of the integral of one or more variable over the entire domain, and hence integral 

equations are of great importance in engineering practice.  The integral equations can be expressed as  

𝐻(𝑥) = ∫ 𝑔(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡 + 𝑓(𝑥) 

𝐹(𝑥) = ∫ 𝑔(𝑥, 𝑢)𝑑𝑢 + ℎ(𝑥)

𝑏

𝑎

 

 

3.1. INITIAL AND BOUNDARY CONDITIONS 

Solution of ODE, PDE or integral equations are attempted in conjunction with initial and boundary conditions.  

Consider the PDE which represented by equation (2) in a two dimensional domain and satisfy the homogeneous conditions on the 

boundary. 

Essential or Dirichlet boundary condition 

𝑝 = 𝑓1 

Natural or Neumann boundary condition 
𝜕𝑝

𝜕𝑛
= 𝑓2 

Mixed boundary condition 
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𝜕𝑝

𝜕𝑛
+ 𝑘(𝑠)𝑝 = 𝑓3 

 Where 𝑓1, 𝑓2 and 𝑓3 are known values on the boundary, s is the arc length along boundary, measured from some fixed point on 

boundary and  
𝜕𝑝

𝜕𝑛
 represents the differentiation along the outward normal n to boundary. 

4. SOLUTION METHODOLOGIES 

Analytical solution can be derived only for a small class of formulation involving ODE, PDE or integral equations. Generally, 

approximate methods such as numerical grid methods are used to obtain solution. 

4.1.  FINITE DIFFERENCE METHOD 

Continuous variation of the function concerned is represented by a set of values at points on a grid of intersecting lines in the FDM. 

The problems to which the method applied are specified by a PDF, a solution region and boundary conditions. The FDM involves 

four basic steps.  

 The solution region is divided into a grid of nodes. 

 Grids are arranged in a rectangular mesh. 

 Approximate the PDE and boundary conditions by a system of linear algebraic equations on grids. 

 Solve the system of linear algebraic equations using Matrix algorithm.  

 

4.2.  FINITE VOLUME METHOD 

The finite volume method (FVM) was originally developed as a special finite difference formulation and it is a discretization 

technique for PDE, especially those that arise from physical conservation laws. FVM uses a volume integral formulation of the 

problem with a finite partitioning set of volumes to discretize the equations. FVM is in common use for discretizing computational 

fluid dynamics equations. The FVM involves four basic steps.  

 The solution region is divided into discrete control volumes. 

 The integration of the governing equation over a control volume to yield a discretized equation at its nodal point. 

 Discretized equations must be set up at each of the nodal points in order to solve a problem. 

 Solve the resulting system of linear algebraic equations using Matrix algorithm. 

 

4.3.  FINITE ELEMENT METHOD 

The finite element method (FEM) is a numerical grid technique for solving PDE.  FEM is used widely for solving engineering 

problems in solid mechanics, heat transfer, structural mechanics, aerospace, automobiles, biomechanics, fluid mechanics and so 

on.  FEM is one of the most flexible and versatile grid method for solving engineering problems. The FEM involves four basic 

steps. 

 The solution region is divided into a finite number of elements such as triangular, quadrilateral shape. 

 Derive governing equations for a particular element and determine the element coefficient matrix. 

 Assemble all elements in the solution region to obtain the global coefficient matrix. 

 Solve the resulting system of linear algebraic equations using Matrix algorithm. 

 

4.4.  BOUNDARY ELEMENT METHOD 

PDE describing the solution region is transformed into an integral equation relating only to boundary values in the BEM. The 

BEM involves some important features as compared to other numerical grid method as 

 It is based on Green’s Integral Theorem. 

 The boundary is discretized instead of the solution region. 

 The computational dimension of the problem is reduced by one. 

 It is ideally suited for solution of many 2D and 3D problems. 

 

4.5.  OTHER NUMERICAL METHODS 

 

 Gradient Discretization Method: The gradient discretization method (GDM) is a numerical technique that encompasses 

a few standard or recent methods. 

 Spectral Method: The idea is to write the solution of the differential equation as a sum of certain basis functions and then 

to choose the coefficients in the sum that best satisfy the differential equation. 

 Multi grid Method: The idea is to accelerate the convergence of a basic iterative method by a global correction of the fine 

grid solution approximation from time to time, accomplished by solving a coarse problem. 

 Mesh free Method: This method does not require a mesh or grid connecting the data points of the simulation domain. It 

is enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming 

effort. 

 Domain Decomposition Method: It is used to solve a boundary value problem by splitting it into smaller boundary value 

problems on subdomains and iterating to coordinate the solution between adjacent subdomains. 
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5. SOFTWARE AND WEB-RESOURCES  

 

Numerical analysis is a branch of mathematics that solves continuous problems using numeric approximation. It involves 

designing methods that give approximate but accurate numeric solutions, which is useful in cases where the exact solution is 

impossible or prohibitively expensive to calculate. Numerical analysis also involves characterizing the convergence, accuracy, 

stability, and computational complexity of these methods. 

 

 Python: Program the numerical methods to create simple and efficient Python codes that output the numerical solutions 

at the required degree of accuracy. Create and manipulate arrays (vectors and matrices) by using NumPy. Use the plotting 

functions of matplotlib to present your results graphically. 

 R Programming: It is used for numerical analysis and provides a solid introduction to the most useful numerical methods 

for scientific and engineering data analysis. 

 MATLAB: It is widely used for applied numerical analysis in engineering, computational finance, and computational 

biology. It provides a range of numerical methods for interpolation, extrapolation, regression, differentiation and 

integration, linear systems of equations, eigenvalues and singular values, ODEs and PDEs. 

 C and C++ Programming: It is well-organized and comprehensive programming language and its aims at enhancing and 

strengthening numerical methods concepts and a fast emerging preferred programming language among software 

developers.  

 Separate Software Packages:   In this section, some of the commonly used software packages in engineering have been 

discussed. 

 STAAD family of FEM analysis and design packages can be used for structure such as multi-stored building, 

towers, culvert, plants, bridges, stadiums and so on. 

 PLAXIS is a range of FEA packages for 2D and 3D analysis of foundation, deformation, stability, groundwater 

flow and so on in geotechnical engineering.  

 ANSYS CFX is based on CFD technology for simulations and solutions of steady state or transient analysis, 

laminar or turbulent flow analysis for a variety of problem. 

 COMSOL Multi-Physics formerly known as FEMLAB is a FEA and solver software package for various physics 

and engineering applications. 

 FLEXPDE6  is multi-physics finite element solution environment for PDE and used for 1D, 2D and 3D PDE 

problems of heat flow, stress analysis, fluid mechanics, chemical reactions, electromagnetics, diffusion and so 

on. It builds a coupling matrix and solver it and plots the results. 

 SFEAP Software will provided sufficient background of learning and in reinforcing the understanding of FEM. 

 

6. APPLICATIONS 

 

Majority of applications of grid methods are in solid mechanics, fluid mechanics, electrical and electromagnetic problems as 

well as in bioengineering problems and so on.  A brief description of the applications of grid methods in various engineering 

filed as  

 Grid method applications in equilibrium conditions includes analysis of beams, plates, shell structure, stress and torsion 

of various structures. 

 Grid method applications include slope stability analysis, soil structure interactions, seepage of fluids in soils and rocks, 

analysis of dams, tunnels, bore holes. 

 Grid method applications include steady and transient seepage in aquifers and porous media, movement of fluids in 

containers, external and internal flow analysis, ocean and harbors, salinity and pollution studies in surface and sub-

surface water problems. 

 Grid method applications include steady and transient thermal analysis is solids and fluids, stress analysis in solids, 

automotive design and analysis and manufacturing process simulation. 

 It is used in electrical network analysis, electromagnetics, insulation design analysis in high voltage equipment and 

heat analysis in electrical and electronic equipment. 

 It is used in chemical engineering include simulation of chemical processes, transport processes and chemical reaction 

simulations. 

 It is used in meteorology include climate, monsoon and wind predictions. 

 It is used in bioengineering include simulation of various human organs, blood circulation prediction and total synthesis 

of human body. 

 

7. CONCLUSION  

FDM is simple and easy to implement, but difficult to implement for irregular grid problems. FEM is more versatile and can be 

applied to most problems compared to the FDM and BEM. BEM has some specific advantages over FEM such as reduction in 

computational dimension and ease in handling of data. FDM is confined to the grid system and is not versatile compared to FEM 

or BEM. Hence, the best choice in many cases is the combination of these three methods in one or other form like FEM-BEM 

combination or BEM-FDM combination or FEM-FDM combination to suit any particular problem to the benefit, accuracy, efficient 

and economy. With advancements in computational science and development of modern computers and high speed processor, 
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application of these grid methods has become much easier.   In future, we are developing the algorithm based on these numerical 

grid techniques and which will be useful to other researcher. 

. 
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