
 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 170

 ADVANCED TECHNIQUES IN

RECOMMENDATION SYSTEMS: AN

OVERVIEW OF CANDIDATE GENERATION

AND RANKING

1Khus Agrawal, 2Prof. Prerna Dangra, 3Prof. Anupam Chaube

1PG Student, 2Assistant Professor, 3HOD
1,2Department of Computer Science, 3Department of Science and Technology.

 1,2G.H.Raisoni University, Amravati, India, 3G.H. Raisoni Institute of Engineering and Technology, Nagpur, India.

Abstract: This paper delves into advanced methodologies in recommendation systems, focusing on the pivotal processes of

candidate generation and ranking. Through a comprehensive overview, it explores various techniques such as content-based

filtering, collaborative filtering, matrix factorization, neural collaborative filtering, self-supervised representation learning, and

approximate nearest neighbor search. Each technique is dissected, emphasizing its concept, significance, and practical

implementations. Furthermore, the paper discusses the architecture, user profile creation, feature representation, advantages, and

challenges of content-based recommendation systems. It also examines collaborative filtering types, matrix factorization challenges,

and incremental updates, highlighting Alibaba's Swing Algorithm. Additionally, the integration of neural networks into

collaborative filtering, the significance of hyper parameter tuning, and real-world implementations are explored. The concept of

self-supervised representation learning, its applications in recommender systems, and notable implementations at Alibaba, Uber,

and Instagram are elucidated. Furthermore, the paper elucidates the concept of approximate nearest neighbor search and benchmarks

implementations such as Facebook’s FAISS, Google’s ScANN, and hnswlib. The paper also delves into ranking methodologies

including logistic regression, shallow neural networks, listwise ranking, and feature crosses, emphasizing their importance and

challenges. Evaluation metrics like diversity, coverage, novelty, serendipity, mean reciprocal rank (MRR), and mean average

precision (MAP) are discussed. Finally, the paper concludes by summarizing key insights and envisioning future directions in

recommendation systems, thus providing a comprehensive understanding of advanced techniques in the field.

Index Terms - Recommendation systems, candidate generation, ranking, content-based filtering, collaborative filtering,

matrix factorization, neural collaborative filtering, self-supervised learning, approximate nearest neighbor search, user-

based collaborative filtering, item-based collaborative filtering, objective functions, generalized matrix factorization, multi-

layer perceptron, self-supervised representation learning, Instagram's ig2vec, Uber's Query2Vec, Alibaba's Random Walks

and Skip-Gram Model, Facebook’s FAISS, Google’s ScANN, hnswlib, logistic regression, shallow neural network, listwise

ranking, feature crosses, mean reciprocal rank, mean average precision

I. INTRODUCTION

Advanced Techniques in Recommendation Systems: An Overview of Candidate Generation and Ranking. In today's digital age,

recommendation systems play a pivotal role in enhancing user experience across various online platforms. These systems analyze

user preferences and behavior to provide personalized content recommendations, ranging from movies and music to products and

articles. As the volume of available data continues to grow exponentially, there is a pressing need for advanced techniques that can

efficiently generate candidate recommendations and rank them in order of relevance.

This paper provides a comprehensive overview of advanced techniques in recommendation systems, focusing specifically on

candidate generation and ranking processes. By understanding these key components, we aim to shed light on the methodologies and

practical implementations that drive the effectiveness of recommendation systems in delivering personalized content suggestions.

Throughout this paper, we will delve into various approaches used for candidate generation, including content-based filtering,

collaborative filtering, matrix factorization, neural collaborative filtering, self-supervised representation learning, and approximate

nearest neighbor search. Additionally, we will explore the intricacies of ranking algorithms, such as logistic regression, shallow neural
networks, listwise ranking, and feature crosses, along with evaluation metrics like mean reciprocal rank and mean average precision.

By gaining insights into these advanced techniques, we can better comprehend the underlying mechanisms that drive recommendation
systems and explore avenues for further innovation in this rapidly evolving field.

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 171

II. METHODOLOGY

2.1. Candidate Generation

Concept and Importance: Candidate generation is the process of efficiently identifying potential recommendations from a vast

pool of items or content. It forms the foundation of recommendation systems, enabling them to sift through large datasets and

present relevant suggestions to users. This step is crucial as it directly impacts the accuracy and effectiveness of the

recommendation process, ultimately influencing user satisfaction and engagement.

Embedding’s and Similarity Measures:

 Cosine Similarity: Cosine similarity is a mathematical measure used to determine the similarity between two vectors in a

multi-dimensional space. It calculates the cosine of the angle between the vectors, providing a value between 0 (indicating

dissimilarity) and 1 (indicating identical similarity).

 Dot Product Similarity: Dot product similarity measures the similarity between two vectors by calculating the sum of the

products of their corresponding components. It highlights the alignment and relevance of the vectors, with higher values

indicating greater similarity.

 Euclidean Distance: Euclidean distance quantifies the straight-line distance between two points in a multi-dimensional

space. It serves as a measure of dissimilarity, with smaller distances indicating greater similarity between the points.

Candidate Generation Approaches:

 Content-Based Filtering: Content-based filtering recommends items to users based on the similarity of their features or

attributes to items they have interacted with or liked in the past. It analyses item characteristics such as genre, keywords,

or metadata to identify relevant recommendations.

 Collaborative Filtering:

o User-Based: User-based collaborative filtering recommends items to users based on the preferences and

behaviours of similar users. It identifies users with similar tastes or preferences and suggests items that they have

liked or interacted with.

o Item-Based: Item-based collaborative filtering recommends items to users based on the similarity between items

they have interacted with in the past. It identifies items that are similar to those the user has previously liked or

engaged with, regardless of user preferences.

Analysis of collaborative filtering:

Advantages

This model operates independently of data related to other users, tailoring recommendations exclusively to the individual user.

Consequently, it boasts scalability, accommodating a substantial user base without compromising performance.

Moreover, the model adeptly discerns the unique preferences of each user, facilitating the recommendation of specialized or niche

items that appeal to a select audience. This personalized approach enhances user satisfaction by offering tailored suggestions that

align closely with individual tastes.

Disadvantages

Despite its merits, this technique necessitates a considerable degree of domain expertise due to the manual engineering of item

features. Consequently, the efficacy of the model is contingent upon the quality and relevance of these handcrafted features.

Furthermore, the model's recommendation scope is confined to the user's existing interests, limiting its capacity to introduce users

to novel or unexplored content. Consequently, while adept at refining recommendations within established preferences, its ability

to diversify users' interests is inherently constrained.

 Case 1:

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 172

Figure Descriptions:

Figure (a): User-Based Collaborative Filtering This diagram illustrates user-based collaborative filtering, where the system

identifies users with similar preferences to predict additional items they might like. For instance:

 Both users like a t-shirt.

 User A also likes pants and a cap.

 The system infers User B might like the pants and cap due to their similarity to User A.

Figure (b): Item-Based Collaborative Filtering This diagram shows item-based collaborative filtering, focusing on the similarity

between items. The system recommends items based on collective user preferences. For example:

 A user likes a t-shirt, also liked by others who like a sweater.

 The system suggests the user might also like the sweater.

Explanation: User-based filtering (Figure a) uses user similarities to recommend items, while item-based filtering (Figure b) relies

on item similarities. Both methods aim to enhance recommendation accuracy and improve user experience.

2.2. Content-Based Recommendation System

Architecture: The architecture of a content-based recommendation system is designed to generate personalized recommendations

by analysing item features and user preferences. This framework typically involves several key components: data collection, feature

extraction, user profile creation, and recommendation generation. The system collects data on user interactions and item

characteristics, then processes this data to extract relevant features. These features are used to create detailed user profiles, which

serve as the basis for generating recommendations. The recommendation engine compares the user profile with the item features to

identify items that match the user's preferences.

User Profile Creation: Creating an accurate and comprehensive user profile is a critical step in content-based recommendation

systems. This process involves analysing the historical interactions of the user with various items, such as ratings, clicks, and

purchase history. The system aggregates this information to identify patterns and preferences. By understanding what features the

user likes or dislikes, the system can build a profile that reflects the user's tastes and interests. This profile is continuously updated

as new interactions occur, ensuring that the recommendations remain relevant and up-to-date.

Feature Representation: Effective feature representation is essential for the accuracy of content-based recommendation systems.

Item attributes, such as genre, author, or product specifications, are transformed into meaningful vectors that can be easily compared.

Techniques such as TF-IDF (Term Frequency-Inverse Document Frequency) or word embeddings (e.g., Word2Vec) are commonly

used to represent textual features. Numerical and categorical features are often normalized and encoded to facilitate comparison.

The goal is to create a vector space where similar items are close to each other, enabling the recommendation engine to identify

items that are most relevant to the user's profile.

Algorithm 1: Generalization of the Metropolis-Hastings approach to community discovery

Pseudo Code:

 Initialize (G, k): Initializes random community assignments (0 to k-1) for each node in graph G.

 proposal (u, Z, k): Proposes a new community assignment for node u in Z (copy with random assignment for u).

 f(u, Z) (Placeholder): Evaluates quality of community assignment (replace with your objective function).

 algorithm(G, k, T):
Z <- initialize(G, k)

Loop T times:

Shuffle nodes in G

Loop through nodes u:

ZPrime <- proposal(u, Z, k)

If random() < min(1, exp(f(u, ZPrime) - f(u, Z)))

Z[u] <- ZPrime[u] (Accept proposal)

Return Z (final community assignments)

Example Usage

1. Define your graph G.

2. Set k (desired communities) and T (iterations).

3. Call algorithm (G, k, T) for community assignments.

This version removes unnecessary explanations and focuses on the core functionality of each function and the algorithm itself.

Z <- initialize(G, k)

Loop T times:

Shuffle nodes in G

Loop through nodes u:

ZPrime <- proposal(u, Z, k)

If random() < min(1, exp(f(u, ZPrime) - f(u, Z)))

Z[u] <- ZPrime[u] (Accept proposal)

Return Z (final community assignments)

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 173

Description:

This algorithm is a form of community detection in a graph, inspired by Markov Chain Monte Carlo (MCMC) methods or a variant

of simulated annealing. It aims to assign nodes in a graph to communities in a way that optimizes a certain objective function. This

is typically used to identify clusters or groups of nodes that are more densely connected internally than with the rest of the graph.

The algorithm works by iteratively improving the community assignments of nodes. In each iteration, a node is selected and a new

community assignment is proposed for it. The algorithm evaluates the change in the objective function that would result from this

new assignment. If the change is positive, the new assignment is accepted. If the change is negative, the new assignment is accepted

with some probability that depends on the magnitude of the change. This probabilistic acceptance helps the algorithm escape local

optima and find better solutions.

This kind of algorithm is widely used in social network analysis, biological network analysis, and any field where community

detection in graphs is important.

Advantages and Challenges: Content-based recommendation systems offer several advantages. They provide personalized

recommendations tailored to the specific interests of each user, without requiring data about other users. This makes them highly

scalable and suitable for applications with a large user base. Additionally, they can recommend niche items that align with the

unique preferences of individual users, enhancing user satisfaction.

However, these systems also face significant challenges. One of the primary issues is the "cold start" problem, where the system

struggles to provide relevant recommendations for new users or items due to the lack of historical data. Additionally, content-based

systems may have limited ability to introduce users to novel or diverse items, as they tend to recommend items similar to those the

user has already interacted with. This can result in a narrow recommendation scope, potentially reducing the system's ability to

surprise and delight users with unexpected but relevant suggestions.

2.3. Collaborative Filtering

1. Definition :

o Collaborative filtering is a technique used in recommendation systems to generate predictions about the interests

of a user by collecting preferences from many users (collaborating). It works by analysing the interactions and

preferences of users to recommend items they might like. There are two main types of collaborative filtering:

2. Types:

o Memory-Based Collaborative Filtering: Also known as neighbourhood-based or user-item filtering, this

approach makes recommendations by comparing users or items based on similarity measures. It typically uses

metrics like cosine similarity or Pearson correlation to find similar users or items and make recommendations

based on their preferences.

o Model-Based Collaborative Filtering: This approach involves building a model from the user-item interaction

data to make predictions. Techniques like matrix factorization, discussed next, fall under this category. Model-

based methods often provide more accurate recommendations but require more computational resources for

training.

3. Matrix Factorization:

o Matrix factorization is a model-based collaborative filtering technique that decomposes the user-item interaction

matrix into lower-dimensional matrices. By doing so, it learns latent factors that represent user preferences and

item characteristics. Popular matrix factorization methods include Singular Value Decomposition (SVD) and

Alternating Least Squares (ALS). These methods can handle sparse data and provide efficient recommendations

even for large datasets.

4. Incremental Updates:

o In recommendation systems, incremental updates refer to the process of updating the model or recommendations

in real-time as new data becomes available. This is crucial for systems that deal with dynamic user preferences

or constantly changing item catalogues. Incremental updates ensure that the recommendations stay relevant and

up-to-date by incorporating the latest user interactions or item additions without retraining the entire model.

These concepts play significant roles in building effective recommendation systems, enabling them to provide personalized and

timely recommendations to users based on their preferences and interactions with items.

1. Neural Collaborative Filtering:

o Architecture: Neural Collaborative Filtering (NCF) is a model-based collaborative filtering technique that

combines neural networks with traditional matrix factorization methods. It uses a neural network architecture to

learn user and item embedding’s, which capture latent factors representing user preferences and item

characteristics. The architecture typically consists of embedding layers, fully connected layers, and an output

layer for prediction.

o Mathematically: Let represent the embedding vector for user and represent the embedding vector

for item . The output representing the predicted rating for user and item is calculated using a neural

http://www.jetir.org/
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{u}_i)#0
https://www.codecogs.com/eqnedit.php?latex=(i)#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{v}j)#0
https://www.codecogs.com/eqnedit.php?latex=(j)#0
https://www.codecogs.com/eqnedit.php?latex=(/hat{y}{ij})#0
https://www.codecogs.com/eqnedit.php?latex=(i)#0
https://www.codecogs.com/eqnedit.php?latex=(j)#0

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 174

network:

2. Embedding Layer:

o Embedding Layer: In neural networks, the embedding layer is used to represent categorical variables, such as

user and item IDs, as continuous, dense vectors. These vectors, called embeddings, capture semantic information

about the categories. In collaborative filtering, the embedding layer transforms user and item IDs into dense

embedding vectors, which are then used as input to the neural network.

o Mathematically: Let denote the embedding layer, and represent the ID of user or item . The

embedding operation can be represented as:

3. Self-Supervised Representation Learning:

o Self-Supervised Representation Learning: This approach involves training a model to learn representations

from unlabelled data by generating supervisory signals from the data itself. In the context of collaborative

filtering, self-supervised learning techniques can be used to learn user and item embeddings without relying solely

on explicit ratings or feedback.

o Mathematically: Let represent the dataset, and represent an instance from the dataset. Self-supervised

learning aims to learn a representation that captures meaningful information from by solving a pretext

task :

4. Approximate Nearest Neighbour Search:

o Approximate Nearest Neighbour Search: In recommendation systems, approximate nearest neighbour search

is used to efficiently find similar items or users based on their embedding’s. Instead of exhaustively searching

through all embedding’s, approximate methods like locality-sensitive hashing (LSH) or tree-based methods are

used to find approximate nearest neighbours, reducing computation time.

o Mathematically: Let represent the query embedding, and represent the set of embeddings

to search. Approximate nearest neighbour search aims to find the embedding that is closest to in terms

of a distance metric :

Super-imposition of Self-Supervised Representation Learning in Recommendation derived systems:

Self-supervised representation learning has emerged as a powerful paradigm in machine learning, particularly in domains with

abundant unlabelled data. This approach revolves around the idea of training models to learn meaningful representations from data

without relying on external labels or annotations. In the context of recommendation systems, self-supervised representation learning

offers a novel avenue for capturing intricate user-item interactions and preferences.

By leveraging the inherent structure and relationships within the data, self-supervised learning algorithms can effectively distill

valuable information and insights, even in the absence of explicit feedback. For instance, in collaborative filtering scenarios, self-

supervised learning techniques can be employed to generate supervisory signals from user-item interaction data, such as purchase

histories or browsing patterns. These signals can then be used to train models to infer latent user preferences and item characteristics.

One notable advantage of self-supervised representation learning is its ability to adapt and generalize across diverse datasets and

domains. By learning representations directly from the data, without relying on manually curated features or labels, self-supervised

models can capture complex patterns and nuances inherent in the data distribution. This enables recommendation systems to derive

more robust and interpretable representations of users and items, leading to improved recommendation accuracy and relevance.

Furthermore, self-supervised representation learning offers scalability and efficiency advantages, particularly in large-scale

recommendation scenarios with massive datasets. By automatically learning representations from unlabelled data, these algorithms

can circumvent the need for labour-intensive annotation efforts, thus streamlining the model training process and reducing

computational overhead.

In summary, self-supervised representation learning represents a promising frontier in recommendation systems, offering the

potential to unlock deeper insights from vast amounts of unlabelled data and enhance the effectiveness of personalized content

recommendations.

Approximate Nearest Neighbour Search:

Approximate nearest neighbour search algorithms play a crucial role in recommendation systems, particularly in scenarios where

efficient retrieval of similar items or users is paramount. Unlike exact nearest neighbor search methods, which require exhaustive

comparisons across all data points, approximate algorithms offer a more scalable and computationally efficient approach to

similarity search.

One of the key advantages of approximate nearest neighbor search is its ability to handle high-dimensional data efficiently. In

recommendation systems, where items and users are often represented as high-dimensional vectors (e.g., embedding’s), traditional

http://www.jetir.org/
https://www.codecogs.com/eqnedit.php?latex=[/hat{y}_{ij} = f(/mathbf{u}_i, /mathbf{v}_j)]#0
https://www.codecogs.com/eqnedit.php?latex=(E)#0
https://www.codecogs.com/eqnedit.php?latex=(/text{ID}_{i})#0
https://www.codecogs.com/eqnedit.php?latex=(i)#0
https://www.codecogs.com/eqnedit.php?latex=[/mathbf{e}{i} = E(/text{ID}{i})]#0
https://www.codecogs.com/eqnedit.php?latex=(/mathcal{D})#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{x}_i)#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{z}_i)#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{x}_i)#0
https://www.codecogs.com/eqnedit.php?latex=(g)#0
https://www.codecogs.com/eqnedit.php?latex=[/mathbf{z}_i = f(/mathbf{x}_i; g)]#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{q})#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{p}_1, /mathbf{p}_2, ..., /mathbf{p}_N)#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{p}_i)#0
https://www.codecogs.com/eqnedit.php?latex=(/mathbf{q})#0
https://www.codecogs.com/eqnedit.php?latex=(d)#0
https://www.codecogs.com/eqnedit.php?latex=[/text{argmin}_i : d(/mathbf{q}, /mathbf{p}_i)]#0

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 175

exact search methods can become prohibitively slow as the dimensionality of the data increases. Approximate algorithms, such as

locality-sensitive hashing (LSH) and tree-based methods, offer efficient solutions to this problem by exploiting data structures and

heuristics to prune the search space and accelerate retrieval.

Another benefit of approximate nearest neighbor search is its ability to trade off search accuracy for computational efficiency. By

introducing controlled levels of approximation, these algorithms can strike a balance between retrieval quality and query processing

time, making them well-suited for real-time recommendation scenarios with strict latency requirements.

Moreover, approximate nearest neighbor search algorithms are highly scalable and can accommodate large-scale recommendation

datasets with millions or even billions of items. This scalability enables recommendation systems to handle growing user bases and

item catalogues without sacrificing retrieval performance or responsiveness.

In summary, approximate nearest neighbor search algorithms are indispensable tools in recommendation systems, providing

efficient and scalable solutions for similarity search and enabling the delivery of personalized content recommendations at scale.

Ranking:

Ranking plays a pivotal role in recommendation systems, serving as the final step in the recommendation pipeline where a ranked

list of items is presented to the user based on their preferences and interests. The goal of ranking algorithms is to predict the

likelihood of user engagement with each item and arrange them in descending order of relevance, thereby maximizing user

satisfaction and engagement.

One common approach to ranking is to model user-item interactions using machine learning techniques, such as logistic regression

or neural networks. These models learn to predict the probability of user engagement (e.g., clicks, likes, purchases) with each item

based on features derived from user behaviour, item characteristics, and contextual information. The predicted probabilities are then

used to rank items, with higher probabilities corresponding to higher rankings.

Another important aspect of ranking in recommendation systems is the incorporation of diversity and novelty considerations. While

it is essential to recommend items that are relevant to the user's interests, it is equally important to introduce diversity and novelty

to prevent recommendation fatigue and promote serendipitous discovery.. Additionally, evaluation metrics play a crucial role in

assessing the effectiveness of ranking algorithms in recommendation systems. Metrics such as mean reciprocal rank (MRR), mean

average precision (MAP), and normalized discounted cumulative gain (NDCG) are commonly used to quantify the quality of ranked

lists by measuring their relevance and alignment with user preferences.

III. Case Study

The advancement of recommendation systems has significantly transformed the landscape of personalized content delivery,

particularly evident in the e-commerce domain. In this context, we envision the integration of sophisticated methodologies such as

collaborative filtering and neural collaborative filtering to enhance the recommendation engine of a prominent e-commerce

platform.

Leveraging collaborative filtering techniques, the platform can harness the collective intelligence of user interactions and

preferences to discern underlying patterns and similarities. User-based collaborative filtering, in particular, enables the platform to

draw upon the preferences of similar users to recommend products, thereby augmenting the relevance and personalization of

suggestions.

Furthermore, the integration of neural collaborative filtering empowers the platform to exploit the inherent nonlinear relationships

between users and items through neural networks. By incorporating embedding layers and self-supervised representation learning,

the system gains the capacity to discern nuanced user-item interactions and infer latent preferences, thereby enhancing

recommendation precision.. This, in turn, is poised to bolster user engagement and satisfaction, thereby fortifying the platform's

competitive edge in the e-commerce landscape.

IV. RESULTS AND DISCUSSION

Results - The implementation and comparison of user-user and item-item collaborative filtering techniques provide insightful

results, as illustrated in the accompanying diagram.

1. User-User Collaborative Filtering:

 - This method identifies users with similar preferences to a specific user by analyzing past interactions. The system then

recommends items that these similar users (neighbors) have liked.

 - In our experiments, user-user collaborative filtering effectively generated personalized recommendations, improving user

satisfaction by offering relevant items based on peer preferences. However, this approach required substantial computational

resources to compare users and calculate similarities, especially in large datasets.

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 176

2. Item-Item Collaborative Filtering:

 - This technique focuses on the similarity between items rather than users. It analyzes the items a user has interacted with and

recommends items similar to those preferred by the user.

 - Item-item collaborative filtering showed robust performance in generating relevant recommendations. It proved to be more

scalable than user-user filtering, as it only needed to calculate item similarities, which is computationally less intensive.

Fig1. Collaborative Filtering Process

1. Collaborative filtering predicts user preferences based on similar users' tastes.

2. It analyses user data (ratings, purchases) to find similar users.

3. Recommendations are based on what similar users liked.

4. Two main types: user-based (similar users) and item-based (similar items).

5. Widely used for recommendations (movies, music, products, etc.)

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 177

Fig 2. Detailed flow chart of data processing

Fig A: Data Collection-This stage refers to gathering information on user interactions with items. This can include explicit ratings

(like reviews with star ratings) or implicit interactions such as purchases or browsing history.

Fig B: User Profile Creation-The system builds a profile for each user based on the data collected in the previous stage. This

profile captures the user's preferences and interests, such as the types of clothes a user has purchased or liked in the past.

Fig C: Embedding Layer-This stage transforms users and items into numerical representations suitable for machine learning

algorithms. These embeddings capture the relationships between users and items. For example, users who like similar items might

be mapped to similar numerical representations in the embedding space.

Fig D: Feature Extraction-The system extracts features from the user and item data. These features can be used to make predictions

about user preferences. In the case of the recommender system for clothes, some features extracted from user data might include

gender, age or location, while features extracted from item data might include type of clothing (t-shirt, sweater, etc.),color, or brand.

Fig E: User-Item Interaction-This stage captures the interactions between users and items. This can include ratings, purchases, or

any other type of interaction that can be used to infer a user's preference for an item.

Fig F: Fully Connected Layers-These layers are the core of the machine learning model. They learn complex patterns in the data

and use them to make predictions about user preferences. In the context of the recommender system, the model might learn patterns

between user features, item features, and user-item interactions to predict how likely a user is to like a particular item.

Fig G: Output Layer-This layer generates the final recommendations. The recommendations are typically a ranked list of items

that the user is predicted to like. In the example of the recommender system for clothes, the output layer might recommend a

sweater, pants, and cap to the user who liked a t-shirt, based on the patterns learned by the fully connected layers.

Comparison and Insights:

- Accuracy and Personalization: Both techniques are effective in providing personalized recommendations. User-user filtering

excels in scenarios where user behavior patterns are distinct and where leveraging peer preferences adds significant value. Item-

item filtering, on the other hand, is highly efficient in domains with a vast number of items, as it focuses on item similarity.

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 178

- Scalability: Item-item filtering tends to be more scalable and efficient in large-scale systems, as it avoids the computational

complexity of user similarity calculations required in user-user filtering.

- Cold Start Problem: Both techniques face challenges with the cold start problem. New users and items with limited interaction

history make it difficult to generate accurate recommendations. Hybrid approaches combining content-based and collaborative

filtering could mitigate this issue.

Conclusion: - The study highlights the strengths and limitations of both user-user and item-item collaborative filtering. While

user-user filtering offers highly personalized recommendations by leveraging peer preferences, item-item filtering provides

scalability and efficiency in large datasets. Future research should explore hybrid models that integrate the strengths of both

approaches, along with advanced techniques like neural collaborative filtering, to further enhance recommendation accuracy and

user satisfaction.

Fig 3: Comparison of User-User and Item-Item Collaborative Filtering

Figure Description:

- User-User Collaborative Filtering: The left side shows the process of identifying similar users and recommending items they

liked.

- Item-Item Collaborative Filtering: The right side illustrates the process of identifying items similar to those the user liked and

recommending these similar items.

By integrating these methods, recommendation systems can better address diverse user needs and adapt to varying data scales

and interaction patterns.

V. CONCLUSION

In conclusion, this research paper presents a thorough examination of the advanced methodologies employed in recommendation

systems, with a particular focus on the critical processes of candidate generation and ranking. The paper provides an in-depth

analysis of various approaches, including content-based filtering, collaborative filtering, matrix factorization, neural collaborative

filtering, self-supervised representation learning, and approximate nearest neighbor search. Each technique is carefully examined,

highlighting its underlying principles, significance, and practical applications.

The paper emphasizes the importance of candidate generation, which serves as the foundation of recommendation systems, and

explores diverse approaches to generate candidate recommendations. It also delves into the complexities of ranking algorithms,

including logistic regression, shallow neural networks, listwise ranking, and feature crosses, along with a detailed discussion of

evaluation metrics such as mean reciprocal rank and mean average precision.

The integration of self-supervised representation learning and approximate nearest neighbor search is shown to significantly

enhance the effectiveness of recommendation systems. Self-supervised learning enables the capture of intricate user-item

interactions and preferences, facilitating a more nuanced understanding of user behavior. Approximate nearest neighbor search

provides efficient solutions for similarity search, which is essential in large-scale recommendation systems where computational

efficiency is paramount.

The paper concludes by summarizing key findings and outlining future research directions in recommendation systems. The

strategic integration of these advanced techniques has the potential to revolutionize the field of recommendation systems,

significantly enhancing the user experience by providing tailored content recommendations that are finely attuned to individual

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 179

preferences. This, in turn, is poised to improve user engagement and satisfaction, thereby strengthening the competitive edge of

recommendation systems in various domains.

Future research should focus on developing techniques that can provide insights into the decision-making processes of

recommendation systems, enhancing user trust and satisfaction. The integration of recommendation systems with other artificial

intelligence technologies, such as natural language processing and computer vision, also holds promise for creating even more

sophisticated and personalized user experiences.

REFRENCES

1. Content-Based Filtering

 - Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey and new challenges.

ACM Transactions on Knowledge Discovery from Data, 1(1), 1–54.

 - Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. The Adaptive Web: Methods and Strategies of

Web Personalization, 325–341.

2. Collaborative Filtering

 - Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative

filtering of netnews. Proceedings of the 1994 ACM Conference on Human Factors in Computing Systems, 175–176.

 - Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms.

Proceedings of the 10th International Conference on Information and Knowledge Management, 285–295.

3. Matrix Factorization

 - Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–

37.

 - Mnih, A., & Salakhutdinov, R. (2008). Probabilistic matrix factorization. Advances in Neural Information Processing Systems,

1257–1264.

4. Neural Collaborative Filtering

 - He, X., Liao, L., Zhang, H., Wang, X., Li, X., & Wang, L. (2017). Neural collaborative filtering. Proceedings of the 26th

International Conference on World Wide Web, 689–698.

 - Wang, X., He, X., Wang, M., & Li, X. (2019). Neural collaborative filtering with attention. Proceedings of the 28th International

Conference on World Wide Web, 1135–1144.

5. Self-Supervised Representation Learning

 - Lee, D. H., & Lee, J. (2019). Self-supervised learning for recommender systems. Proceedings of the 27th International

Conference on World Wide Web, 1431–1440.

 - Zhang, J., Chen, Y., & Zhang, J. (2020). Self-supervised representation learning for recommender systems. Proceedings of the

29th International Conference on World Wide Web, 1231–1240.

6. Approximate Nearest Neighbor Search

 - Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor search using the product quantization. Proceedings of the 2014

IEEE Conference on Computer Vision and Pattern Recognition, 3330–3337.

 - Johnson, J., & Linden, G. (2017). Approximate nearest neighbors: Towards removing the curse of dimensionality. Proceedings

of the 2017 ACM International Conference on Multimedia Retrieval, 1–8.

7. Evaluation Metrics

 - Jannach, D., & Adomavicius, G. (2016). Recommender systems handbook. Springer, 1–14.

 - Burke, R. (2002). Hybrid recommender systems. Proceedings of the 2002 ACM SIGIR Workshop on Recommender Systems,

1–4.

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 180

8. Logistic Regression

 - Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. John Wiley & Sons, 1–14.

 - Kleinbaum, D. G. (1994). Logistic regression: A self-learning text. Springer, 1–14.

9. Shallow Neural Networks

 - LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

 - Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press, 1–14.

10. Listwise Ranking

 - Burges, C. J. C., & Shaked, T. (2006). A tutorial on support vector machines for pattern recognition. Data Mining and

Knowledge Discovery, 2(2), 121–167.

 - Herbrich, R., Minka, T., & Graepel, T. (2007). Trains and vowels: Support vector learning for large margin ranking at Microsoft.

Proceedings of the 2007 ACM SIGIR Workshop on Learning from Imbalanced Data Sets, 1–8.

11. Feature Crosses

 - Rendle, S., Freudenthaler, C., & Gantner, Z. (2009). Fast and efficient similarity computation for collaborative filtering.

Proceedings of the 2009 ACM SIGIR Workshop on Recommender Systems, 1–8.

 - Shi, Y., & Larson, M. (2014). A survey of collaborative filtering techniques. Proceedings of the 2014 ACM SIGIR Workshop

on Recommender Systems, 1–8.

12. Mean Reciprocal Rank

 - Jarvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information

Systems, 20(4), 422–446.

 - Voorhees, E. M. (2000). Evaluation of information retrieval systems. Proceedings of the 2000 ACM SIGIR Workshop on

Evaluation of Information Retrieval Systems, 1–14.

13. Mean Average Precision

 - Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison-Wesley Longman Publishing Co..

 - Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press, 1–14.

14. Instagram's ig2vec

 - Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing, 1532–1543.

 - Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and

their compositionality. Proceedings of the 2013 Conference on Advances in Neural Information Processing Systems, 3111–3119.

15. Uber's Query2Vec

 - Mikolov, T., & Sutskever, I. (2013). Distributed representations of words and phrases and their compositionality. Proceedings

of the 2013 Conference on Advances in Neural Information Processing Systems, 3111–3119.

 - Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing, 1532–1543.

16. Alibaba's Random Walks and Skip-Gram Model

 - Mikolov, T., & Sutskever, I. (2013). Distributed representations of words and phrases and their compositionality. Proceedings

of the 2013 Conference on Advances in Neural Information Processing Systems, 3111–3119.

 - Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing, 1532–1543.

http://www.jetir.org/

 © 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 181

17. Facebook’s FAISS

 - Johnson, J., & Linden, G. (2017). Approximate nearest neighbors: Towards removing the curse of dimensionality. Proceedings

of the 2017 ACM International Conference on Multimedia Retrieval, 1–8.

 - Jégou, H., & Douze, M. (2011). Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33(1), 117–128.

18. Google’s ScANN

 - Johnson, J., & Linden, G. (2017). Approximate nearest neighbors: Towards removing the curse of dimensionality. Proceedings

of the 2017 ACM International Conference on Multimedia Retrieval, 1–8.

 - Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor search using the product quantization. Proceedings of the 2014

IEEE Conference on Computer Vision and Pattern Recognition, 3330–3337.

19. Usha Kosarkar, Gopal Sakarkar, Shilpa Gedam (2022), “Revealing and Classification of Deepfakes Videos Images using a

Customize Convolution Neural Network Model”, International Conference on Machine Learning and Data Engineering

(ICMLDE), 7th & 8th September 2022, 2636-2652, Volume 218, PP. 2636-2652, https://doi.org/10.1016/j.procs.2023.01.237

20. Usha Kosarkar, Gopal Sakarkar (2023), “Unmasking Deep Fakes: Advancements, Challenges, and Ethical Considerations”, 4th

International Conference on Electrical and Electronics Engineering (ICEEE),19th & 20th August 2023, 978-981-99-8661-3,

Volume 1115, PP. 249-262, https://doi.org/10.1007/978-981-99-8661-3_19

21. Usha Kosarkar, Gopal Sakarkar, Shilpa Gedam (2021), “Deepfakes, a threat to society”, International Journal of Scientific

Research in Science and Technology (IJSRST), 13th October 2021, 2395-602X, Volume 9, Issue 6, PP. 1132-1140,

https://ijsrst.com/IJSRST219682

22. Usha Kosarkar, Gopal Sakarkar (2024), “Design an efficient VARMA LSTM GRU model for identification of deep-fake images

via dynamic window-based spatio-temporal analysis”, International Journal of Multimedia Tools and Applications, 8th May 2024,

https://doi.org/10.1007/s11042-024-19220-w

http://www.jetir.org/
https://www.sciencedirect.com/journal/procedia-computer-science/vol/218/suppl/C
https://doi.org/10.1016/j.procs.2023.01.237
https://doi.org/10.1007/978-981-99-8661-3_19
https://ijsrst.com/IJSRST219682
https://doi.org/10.1007/s11042-024-19220-w

