
© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 308

 PIPELINE MAESTRO – ORCHESTRATING

BUILD, TEST, AND DEPLOY

1Ishant Sontakke, 2Prof. Najeefa Nasreen

1PG Student, 2Assistant Professor
1,2Department of Computer Science

1,2G.H.Raisoni University, Amravati, India

Abstract: Pipeline Maestro is a complete software solution that optimizes and automates the software development lifecycle, with

an emphasis on the orchestration of build, test, and deployment tasks. This project provides a single platform for pipeline definition,

management, and execution with the goal of streamlining development workflows, increasing efficiency, and improving code

quality. Automated build and test capabilities, smooth interface with version control systems, deployment automation in various

settings, functionality for monitoring and reporting, and customization choices to meet a range of development demands are some

of the key features.

Index Terms - Continuous Integration, Continuous Delivery, Continuous Deployment, Continuous Software Engineering,

Systematic Literature Review, Empirical Software Engineering.

I. INTRODUCTION

With increasing competition in software market, organizations pay significant attention and allocate resources to develop and deliver

high-quality software at much accelerated pace [1]. Continuous Integration (CI), Continuous Delivery (CDE), and Continuous

Deployment (CD), called continuous practices for this study, are some of the practices aimed at helping organisations to accelerate

their development and delivery of software features without compromising quality [2]. Whilst CI advocates integrating work-in-

progress multiple times per day, CDE and CD are about ability to release values quickly and reliably to customers by bringing

automation support as much as possible [3 - 4].

(A) Continuous practices are expected to provide several benefits .

(B) Getting more and quick feedback from the software development process and customers.

 Having frequent and reliable releases, which lead to improved customer satisfaction and product quality.

Through CD, the connection between development and operations teams is strengthened and manual tasks can be eliminated

[5 - 6]. A growing number of industrial cases indicate that the continuous practices are making inroad in software development

industrial practices across various domains and sizes of organizations [5 -7 -8]. At the same time, adopting continuous practices is

not a trivial task since organizational processes, practices, and tool may not be ready to support the highly complex and challenging

nature of these practices. Due to the growing importance of continuous practices, an increasing amount of literature describing

approaches, tools, practices, and challenges has been published through diverse venues. Evidence for this trend is the existence of

five secondary studies on CI, rapid release, CDE and CD [9 - 13]. These practices are highly correlated and intertwined, in which

distinguishing these practices are sometimes hard and their meanings highly depends on how a given organization interprets and

employs them [14].

II. RELATED WORK

Software development workflows are streamlined and optimized using several automation tools and platforms in related work

in the field of coordinating build, test, and deployment processes. By automating the development, testing, and deployment of

software applications, these technologies assist companies in improving productivity, decreasing mistakes, and shortening time

to market.

Typical relevant work in this field includes the following:

Tools for continuous deployment and integration (CI/CD): The process of merging code changes, executing tests, and delivering

apps to production environments are all automated by these technologies.

Tools for configuration management: Programs like as Ansible, Puppet, and Chef facilitate the automation and administration

of server and infrastructure setup.

Tools for Infrastructure as Code (IaC): Code is used to automate infrastructure provisioning and maintenance on platforms like

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 309

Terraform and Cloud Formation.

Tools for orchestration: The deployment and scaling of containerized applications may be managed with the aid of platforms

such as Dockers Swarm, Apache Mesos, and Cabernets.

Tools for testing automation: Programs such as Selenium, JUnit, and TestNG automate the process of executing tests to guarantee

the dependability and quality of software programs.

In general, the associated research in this area is on using automation and orchestration technologies to build dependable and

effective software delivery pipelines that let businesses produce high-caliber software more quickly.

III. PROPOSED WORK

A proposed CI/CD pipeline for web applications would include several components that work together to automate the build,

testing, and deployment processes. A high-level overview of a proposed system for a CI/CD pipeline for web applications is

provided below:

Version Control System (VCS): To manage the codebase and track changes, a version control system such as Git would be used.

Git would be used by developers to commit changes to the codebase, and Git would be used by the pipeline to retrieve the most

recent version of the code.

Containerization: The application and its dependencies would be packaged into containers using Dockers. The build process

would produce a Dockers image, which would be uploaded to a container registry like Dockers Hub.

Continuous Deployment (CD) Tools: A CD tool, such as AWS Code Deploy, would be used to automate the application's

deployment across multiple environments. The CD tool would be set up to retrieve the Dockers image from the container registry

and deploy it to a staging environment for additional testing. The CD tool would automatically promote the image to the

production environment once the application passed all tests in the staging environment.

Testing Frameworks: Testing frameworks like Selenium would be used to automate application testing. A suite of automated

tests would be run during the build process and deployment to the staging environment as part of the pipeline. This ensures that

any problems are identified and resolved before the application is deployed to production. Monitoring and logging tools, such as

New Relic, would be used to monitor the application's performance and provide feedback to the development team. The

monitoring tools would be set up to notify the team if any problems arose in production, allowing them to quickly identify and

resolve problems.

The proposed CI/CD pipeline for web applications would streamline and automate the process of developing, testing, and

deploying applications. It would reduce the likelihood of errors and accelerate development and deployment, resulting in a more

efficient and effective development process.

There are numerous crucial processes involved in designing and implementing a CI/CD (Continuous Integration/Continuous

Deployment) pipeline for a web application. An overview of the system analysis and method for establishing such a pipeline is

given below:

 Define Requirements: To begin, determine the precise specifications of your web application and the results you hope

to achieve with your CI/CD pipeline. Consider elements like the target platforms, the development and deployment

environments, the programming languages, frameworks, and technologies utilized, as well as any quality or security

standards.

 Version Control: Manage your source code and make sure that all changes are tracked by implementing a version

control system (such as Git). Use branching and merging techniques that are compatible with your development

workflow (such as GitFlow) and lay out precise rules for code review and teamwork.

 Automated Build: Establish an automated build procedure that will translate your application code into deployable

artefacts by assembling and packaging them. Create a build script or configuration file that lists the necessary

dependencies, build steps, and other requirements (using, for instance, Maven or Cradle tools).

Creating a thorough testing approach can help you ensure the dependability and quality of your web application. End-to-end

tests, integration tests, and unit tests are frequently included in this. Use testing frameworks and tools appropriate for the

frameworks and programming languages you select (JUnit, Selenium, etc.). To run these tests automatically after each build,

incorporate them into your CI/CD pipeline.

Fig. 1: Flow Chart.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 310

IV. DETAILED SYSTEM ANALYSIS

Detailed system and analysis about deployed project in the Tomcat server using CI/CD pipeline Setup:-

Doctor and patient appointment portals have revolutionized the way healthcare services are delivered. These portals provide a

convenient and efficient way for patients to schedule appointments with their healthcare providers, access medical records,

communicate with their doctors, and receive important updates and reminders.

Doctor Patient Portal is an Advance Java Project. Technology used in this project: Advance JAVA concepts like JSP, JSTL,

Servlet, HTML, CSS, Bootstrap 5 and MySQL.

(A). System Flow Diagram:-

Fig 2: System Flow Diagram of Doctor Patient Appointment Portal

(B). Data Structures and Tables: -

Table 1:- Patient Details

Full

Name

Gende

r

Ag

e

Appointm

ent

Email Phone Disea

ses

Doctor

Name

Addre

ss

Status

Md.

Talal

Wasi

m

Male 27 2022-

012-03

wasim@g

mail.com

01770000

000

Fever Dr. M Dhaka Pendin

g

Heme

l

Male 22 2022-12-

03

hemel@g

mail.com

0122 Pain

in

Knee

Dr.Tai

mur

Dhaka Pendin

g

Preti

Zinta

Femal

e

42 2022-11-

30

y@gmail.c

om

01223241

213

Chest

pain

Devi

Shetty

Mumb

ai,

India

Normal

pain,

Medici

ne

given.

http://www.jetir.org/
mailto:wasim@gmail.com
mailto:wasim@gmail.com
mailto:hemel@gmail.com
mailto:hemel@gmail.com

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 311

Table 2:- Appointment List

Full

Name

Gender Age Appointment

Date

Phone Diseases Doctor

Name

status

Wasim male 22 2022-11-25 111 Cold Dr. M 1. Tab.

Ace

1+0+1----

---5 Days.

Md.

Talal

Wasim

male 27 2022-12-03 01770000000 Fever Dr. M Pending

Database Results:-

Fig 3: Patient Details Result

Fig 4: Appointment List

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 312

Fig 5: Patient Details

V. PROPOSED RESEARCH MODEL

The following elements may be included in a suggested research model for Pipeline Maestro - Orchestrating Build, Test, and

Deploy:

Problem Statement: Clearly state the difficulties and problems that businesses have while trying to manage the software application

development, testing, and deployment processes.

Describe the precise aims and objectives of the study, such as enhancing productivity, decreasing mistakes, and shortening

deployment schedules.

Review of the Literature: Examine the body of knowledge about software development deployment techniques, testing

methodologies, CI/CD procedures, and automation technologies. Theoretical Framework: Create a theoretical framework that

delineates the fundamental ideas and precepts that underpin the coordination of the activities involved in build, test, and deployment.

Study Methodology: Describe the study methodology, taking into account the procedures for data analysis, sampling strategies, and

data gathering.

Data Collection: Gather information on the experiences, difficulties, and results of companies who are coordinating build, test, and

deployment processes by utilizing Pipeline Maestro or comparable platforms.

Data Analysis: Examine the gathered information to find trends, patterns, and insights into how Pipeline Maestro works and how it

affects software delivery pipelines.

Results and Suggestions: Outline the study's conclusions and include suggestions on how to best utilize Pipeline Maestro to

coordinate the build, test, and deployment processes.

Provide a summary of the study's main conclusions and talk about how they could affect software development procedures and

future lines of inquiry.

Highlight the study model's contributions to the advancement of knowledge and comprehension about the use of automation tools

in software delivery pipelines.

VI. PERFORMANCE EVALUATION

The following key performance indicators (KPIs) and metrics can be used to assess how well Pipeline Maestro performs in

coordinating build, test, and deployment processes:

 Build Time: Calculate how long it takes to compile a software program from its source code into executable binaries.

To evaluate the effect on efficiency, compare the build times prior to and following the implementation of Pipeline

Maestro.

 Test Execution Time: Calculate how long it takes to run the application's automated tests. To ascertain the effect on

testing efficiency, compare the test execution time with and without Pipeline Maestro.

Determine the frequency with which updates or new features are rolled out to production environments. Evaluate if Pipeline

Maestro's streamlined deployment procedure has resulted in more frequent deployments. Deployment Success Rate: Monitor the

Pipeline Maestro deployments' success rate. Track the proportion of successful vs unsuccessful deployments to determine the

orchestration tool's dependability and efficacy.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 313

VII. RESULT ANALYSIS

Faster Time-to-Market: By automating the build, testing, and deployment processes, CI/CD makes it possible to bring features

and bug fixes to production more quickly. Developers may concentrate on writing code while the pipeline handles monotonous

chores, which reduces manual lab hour and quickens the release cycle.

Continuous Integration (CI) is the practice of developers routinely merging their changes into a shared repository, which starts

automated builds and tests. As a result, conflicts are promptly identified, and code updates are regularly implemented. A more

stable codebase results from continuous integration's assistance in quickly identifying and resolving integration problems.

Early Bug Detection: The CI/CD pipeline includes automated testing, such as unit tests, integration tests, and end-to-end tests.

Testing every update to the code helps find problems and issues early, enhancing the quality of the product.

Collaboration among developers, testers, and operations teams is improved thanks to CI/CD. Developers can work on several

additions or fixes at once using version control, and teams can evaluate code changes and offer input. This teamwork improves

communication and makes sure that everyone is striving to provide a trustworthy online application.

Deployment Reliability: The pipeline's CD component offers automation that makes deployments consistent and repeatable. The

application is deployed in a known state and deployments are carried out in a controlled and standardized manner, minimizing

the possibility of human mistakes.

Fig 6: Model Training and Accuracy

VIII. CONCLUSION

Continuous Integration/Continuous Deployment (CI/CD) is a development methodology that allows developers to automate the

process of creating, testing, and deploying software applications. The CI/CD pipeline is a collection of automated processes that

assist developers in ensuring that code changes are constantly tested and integrated into the application without errors or issues.

In the world of software development, CI/CD is becoming increasingly popular, particularly for web applications. This is because

web applications are typically more complex than other types of software applications, necessitating more testing and integration

to ensure proper operation. This article will go over the CI/CD pipeline for web applications and how it can help developers.

Overall, Pipeline Maestro has proven to be a valuable asset in optimizing software delivery pipelines, enhancing productivity,

and driving continuous improvement in software development practices.

REFERENCES

[1] Phillips, M. Sens, A. de Jonge and M. van Holsteijn, The IT Manager’s Guide to Continuous Delivery, XebiaLabs, Hilversum,

The Netherlands, 2015.

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through Build Test and Deployment Automation,

Reading, MA, USA: Addison-Wesley, 2010.

[3] M. Fowler, Continuous Integration, Oct. 2015, [online] Available:

http://martinfowler.com/articles/continuousIntegration.html.

[4] B. Fitzgerald and K.-J. Stol, "Continuous software engineering: A roadmap and agenda", J. Syst. Softw., vol. 123, pp. 176-

189, Jan. 2017.

[5] M. LeppAdŉen et al., "The highways and country roads to continuous deployment", IEEE Softw., vol. 32, pp. 64-72, Mar.

2015.

[6] L. Chen, "Continuous delivery: Huge benefits but challenges too", IEEE Softw., vol. 32, no. 2, pp. 50-54, Mar. 2015.

[7] A. A. U. Rahman, E. Helms, L. Williams and C. Parnin, "Synthesizing continuous deployment practices used in software

development", Proc. Agile Conf. (AGILE), pp. 1-10, Aug. 2015.

[8] H. H. Olsson, H. Alahyari and J. Bosch, "Climbing the ‘stairway to heaven’: A mulitiple-case study exploring barriers in the

transition from agile deployment of software", Proc. 38th Euromicro Conf. Softw. Eng. Adv. Appl., pp. 392-399, Sep. 2012.

[9] P. Rodríguez et al., "Continuous deployment of software intensive products and services: A systematic mapping study", J.

Syst. Softw., vol. 123, pp. 263-291, Jan. 2017.

[10] E. Laukkanen, J. Itkonen and C. Lassenius, "Problems causes and solutions when adopting continuous delivery ", Inf. Softw.

Technol., vol. 82, pp. 55-79, Feb. 2017.

http://www.jetir.org/

© 2024 JETIR June 2024, Volume 11, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIRGI06048 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 314

[11] D. Ståhl and J. Bosch, "Modeling continuous integration practice differences in industry software development", J. Syst.

Softw., vol. 87, pp. 48-59, Jan. 2014.

[12] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström and K. Petersen, "On rapid releases and software testing ", Empirical

Softw. Eng., vol. 20, no. 5, pp. 1384-1425, 2015.

[13] A. Eck, F. Uebernickel and W. Brenner, "Fit for continuous integration: How organizations assimilate an agile

practice", Proc. 20th Amer. Conf. Inf. Syst., 2014.

[14] A. Thiele, Continuous Delivery: An Easy Must-Have for Agile Development, Jul.

2016,https://blog.inf.ed.ac.uk/sapm/2014/02/04/continuous-delivery-an-easy-must-have-foragile-development/.

[15] Usha Kosarkar, Gopal Sakarkar, Shilpa Gedam (2022), “Revealing and Classification of Deepfakes Videos Images using a

Customize Convolution Neural Network Model”, International Conference on Machine Learning and Data Engineering

(ICMLDE), 7th & 8th September 2022, 2636-2652, Volume 218, PP. 2636-2652, https://doi.org/10.1016/j.procs.2023.01.237

[16] Usha Kosarkar, Gopal Sakarkar (2023), “Unmasking Deep Fakes: Advancements, Challenges, and Ethical Considerations”,

4th International Conference on Electrical and Electronics Engineering (ICEEE),19th & 20th August 2023, 978-981-99-8661-3,

Volume 1115, PP. 249-262, https://doi.org/10.1007/978-981-99-8661-3_19

[17] Usha Kosarkar, Gopal Sakarkar, Shilpa Gedam (2021), “Deepfakes, a threat to society”, International Journal of Scientific

Research in Science and Technology (IJSRST), 13th October 2021, 2395-602X, Volume 9, Issue 6, PP. 1132-1140,

https://ijsrst.com/IJSRST219682

[18] Usha Kosarkar, Gopal Sakarkar (2024), “Design an efficient VARMA LSTM GRU model for identification of deep-fake

images via dynamic window-based spatio-temporal analysis”, International Journal of Multimedia Tools and Applications, 8th May

2024, https://doi.org/10.1007/s11042-024-19220-w

http://www.jetir.org/
https://blog.inf.ed.ac.uk/sapm/2014/02/04/continuous-delivery-an-easy-must-have-foragile-development/
https://www.sciencedirect.com/journal/procedia-computer-science/vol/218/suppl/C
https://doi.org/10.1016/j.procs.2023.01.237
https://doi.org/10.1007/978-981-99-8661-3_19
https://ijsrst.com/IJSRST219682
https://doi.org/10.1007/s11042-024-19220-w

